Anthropogenic global climate change has already led to alterations in biodiversity patterns by directly and indirectly affecting species distributions. It has been suggested that poikilothermic animals, including reptiles, will be particularly affected by global change and large-scale reptile declines have already been observed. Currently, half of the world's freshwater turtles and tortoises are considered threatened with extinction, and climate change may exacerbate these declines. In this study, we assess how global chelonian species richness will change in the near future. We use species distribution models developed under current climate conditions for 78% of all extant species and project them onto different Intergovernmental Panel on Climate Change (IPCC) scenarios for 2080. We detect a strong dependence of temperature shaping most species ranges, which coincide with their general temperature-related physiological traits (i.e., temperature-dependent sex determination). Furthermore, the extent and distribution of the current bioclimatic niches of most chelonians may change remarkably in the near future, likely leading to a substantial decrease of local species abundance and ultimately a reduction in species richness. Future climatic changes may cause the ranges of 86% of the species to contract, and of these ranges, nearly 12% are predicted to be situated completely outside their currently realized niches. Hence, the interplay of increasing habitat fragmentation and loss due to climatic stress may result in a serious threat for several chelonian species.
The climatic cycles of the Quaternary, during which global mean annual temperatures have regularly changed by 5–10°C, provide a special opportunity for studying the rate, magnitude, and effects of geographic responses to changing climates. During the Quaternary, high- and mid-latitude species were extirpated from regions that were covered by ice or otherwise became unsuitable, persisting in refugial retreats where the environment was compatible with their tolerances. In this study we combine modern geographic range data, phylogeny, Pleistocene paleoclimatic models, and isotopic records of changes in global mean annual temperature, to produce a temporally continuous model of geographic changes in potential habitat for 59 species of North American turtles over the past 320 Ka (three full glacial-interglacial cycles). These paleophylogeographic models indicate the areas where past climates were compatible with the modern ranges of the species and serve as hypotheses for how their geographic ranges would have changed in response to Quaternary climate cycles. We test these hypotheses against physiological, genetic, taxonomic and fossil evidence, and we then use them to measure the effects of Quaternary climate cycles on species distributions. Patterns of range expansion, contraction, and fragmentation in the models are strongly congruent with (i) phylogeographic differentiation; (ii) morphological variation; (iii) physiological tolerances; and (iv) intraspecific genetic variability. Modern species with significant interspecific differentiation have geographic ranges that strongly fluctuated and repeatedly fragmented throughout the Quaternary. Modern species with low genetic diversity have geographic distributions that were highly variable and at times exceedingly small in the past. Our results reveal the potential for paleophylogeographic models to (i) reconstruct past geographic range modifications, (ii) identify geographic processes that result in genetic bottlenecks; and (iii) predict threats due to anthropogenic climate change in the future.
Based on an integrative taxonomic approach, we examine the differentiation of Southeast Asian snail-eating turtles using information from 1863 bp of mitochondrial DNA, 12 microsatellite loci, morphology and a correlative species distribution model. Our analyses reveal three genetically distinct groups with limited mitochondrial introgression in one group. All three groups exhibit distinct nuclear gene pools and distinct morphology. Two of these groups correspond to the previously recognized species Malayemys macrocephala (Chao Phraya Basin) and M. subtrijuga (Lower Mekong Basin). The third and genetically most divergent group from the Khorat Basin represents a previously unrecognized species, which is described herein. Although Malayemys are extensively traded and used for religious release, only few studied turtles appear to be translocated by humans. Historic fluctuations in potential distributions were assessed using species distribution models (SDMs). The Last Glacial Maximum (LGM) projection of the predictive SDMs suggests two distinct glacial distribution ranges, implying that the divergence of M. macrocephala and M. subtrijuga occurred in allopatry and was triggered by Pleistocene climate fluctuations. Only the projection derived from the global circulation model MIROC reveals a distinct third glacial distribution range for the newly discovered Malayemys species.
Home range is the area traversed by an animal in its normal activities. The size of home ranges is thought to be tightly linked to body size, through size effect on metabolic requirements. Due to the structure of Eltonian food pyramids, home range sizes of carnivores are expected to exceed those of herbivorous species. The habitat may also affect home range size, with reduced costs of locomotion or lower food abundance in, for example, aquatic habitats selecting for larger home ranges. Furthermore, home range of males in polygamous species may be large due to sexual selection for increased reproductive output. Comparative studies on home range sizes have rarely been conducted on ectotherms. Because ectotherm metabolic rates are much lower than those of endotherms, energetic considerations of metabolic requirements may be less important in determining the home range sizes of the former, and other factors such as differing habitats and sexual selection may have an increased effect. We collected literature data on turtle home range sizes. We used phylogenetic generalized least squares analyses to determine whether body mass, sex, diet, habitat and social structure affect home range size. Turtle home range size increases with body mass. However, body mass explains relatively little of the variation in home range size. Aquatic turtles have larger home ranges than semiaquatic species. Omnivorous turtles have larger home ranges than herbivores and carnivores, but diet is not a strong predictor. Sex and social structure are unrelated to home range size. We conclude that energetic constraints are not the primary factor that determines home range size in turtles, and energetic costs of locomotion in different habitats probably play a major role.
The Elongated Tortoise, Indotestudo elongata (Family Testudinidae), is a mediumsized tortoise with a straight carapace length of up to 360 mm. The species is sexually dimorphic; among the morphological differences between the sexes, males and females differ in facial coloration during the breeding season. Indotestudo elongata inhabits low to mid-elevation habitats in Southeast Asia: open deciduous dipterocarp forests, grasslands, bamboo forests, secondary forests, and hilly evergreen forests. The species is a generalist omnivore. In the wild, courtship and mating take place at the beginning of the rainy season. Clutches of up to 10 eggs are laid toward the end of the wet period; hatchlings emerge from the nest at the beginning of the subsequent rainy season. The species is heavily exploited by humans for food and traditional medicine across its range. In addition, I. elongata is greatly affected by habitat destruction, fragmentation, and loss. As a result, although protected by international and national regulations, the species has undergone severe population declines. Recommended conservation measures include greater enforcement of wildlife protection laws, conservation breeding and monitored releases of tortoises, and continued research. DIsTrIbuTIon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.