Background Serological assays detecting anti-SARS-CoV-2 antibodies are being widely deployed in studies and clinical practice. However, the duration and effectiveness of the protection conferred by the immune response remains to be assessed in population-based samples. To estimate the incidence of newly acquired SARS-CoV-2 infections in seropositive individuals as compared to seronegative controls we conducted a retrospective longitudinal matched study. Methods A seroprevalence survey including a representative sample of the population was conducted in Geneva, Switzerland between April and June 2020, immediately after the first pandemic wave. Seropositive participants were matched one-to-two to seronegative controls, using a propensity-score including age, gender, immunodeficiency, BMI, smoking status and education level. Each individual was linked to a state-registry of SARS-CoV-2 infections. Our primary outcome was confirmed infections occurring from serological status assessment to the end of the second pandemic wave (January 2021). Results Among 8344 serosurvey participants, 498 seropositive individuals were selected and matched with 996 seronegative controls. After a mean follow-up of 35.6 (SD 3.2) weeks, 7 out of 498 (1.4%) seropositive subjects had a positive SARS-CoV-2 test, of whom 5 (1.0%) were classified as reinfections. In contrast, the infection rate was higher in seronegative individuals (15.5%, 154/996) during a similar follow-up period (mean 34.7 [SD 3.2] weeks), corresponding to a 94% (95%CI 86% to 98%, P<0.001) reduction in the hazard of having a positive SARS-CoV-2 test for seropositives. Conclusions Seroconversion after SARS-CoV-2 infection confers protection against reinfection lasting at least 8 months. These findings could help global health authorities establishing priority for vaccine allocation.
Importance: Serological assays detecting specific IgG antibodies generated against the Spike protein following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection are being widely deployed in research studies and clinical practice. However, the duration and the effectiveness of the protection conferred by the immune response against future infection remains to be assessed in a large population. Objective: To estimate the incidence of newly acquired SARS-CoV-2 infections in seropositive individuals from a population-based sample as compared to seronegative controls. Design: Retrospective longitudinal propensity-score matched cohort study. Setting: A seroprevalence survey including a population-based representative sample of the population from the canton of Geneva (Switzerland) was conducted between April and June 2020, immediately after the first pandemic wave. Each individual included in the seroprevalence survey was linked to a state centralized registry compiling virologically confirmed SARS-CoV-2 infections since the beginning of the pandemic. Participants: Participants aged twelve years old and over, who developed anti-spike IgG antibodies were matched one-to-two to seronegative controls, using a propensity-score including age, gender, immunodeficiency, body mass index, smoking status and education level. Exposure: SARS-CoV-2 seropositivity. Main outcomes and measures: Our primary outcome was virologically confirmed SARS-CoV-2 infections which occurred from serological status assessment in April-June 2020 to the end of the second pandemic wave (January 2021). Additionally, incidence of infections, rate of testing and proportion of positive tests were analysed. Results: Among 8344 serosurvey participants, 498 seropositive individuals were selected and matched with 996 seronegative controls. After a mean follow-up of 35.6 (Standard Deviation, SD: 3.2) weeks, 7 out of 498 (1.4%) seropositive subjects had a positive SARS-CoV-2 test, of which 5 (1.0%) were considered as reinfections. By contrast, infection rate was significantly higher in seronegative individuals (15.5%, 154/996) during a similar mean follow-up of 34.7 (SD 3.2) weeks, corresponding to a 94% (95%CI 86% to 98%, P<0.001) reduction in the hazard of having a positive SARS-CoV-2 test for seropositive subjects. Conclusions and relevance: Seroconversion after SARS-CoV-2 infection confers protection to successive viral contamination lasting at least 8 months. These findings could help global health authorities establishing priority for vaccine allocation.
PurposeThe Actionable Register of Geneva Outpatients and inpatients with SARS-CoV-2 (ARGOS) is an ongoing prospective cohort created by the Geneva Directorate of Health. It consists of an operational database compiling all SARS-CoV-2 test results recorded in the Geneva area since late February 2020. This article aims at presenting this comprehensive cohort, in light of some of the varying public health measures in Geneva, Switzerland, since March 2020.ParticipantsAs of 1 June 2021, the database included 360 525 patients, among which 65 475 had at least one positive test result for SARS-CoV-2. Among all positive patients, 37.6% were contacted only once, 10.6% had one follow-up call, 8.5% had two and 27.7% had three or more follow-up calls. Participation rate among positive patients is 94%. Data collection is ongoing.Findings to dateARGOS data illustrates the magnitude of COVID-19 pandemic in Geneva, Switzerland, and details a variety of population factors and outcomes. The content of the cohort includes demographic data, comorbidities and risk factors for poor clinical outcome, self-reported COVID-19 symptoms, environmental and socioeconomic factors, prospective and retrospective contact tracing data, travel quarantine data and deaths. The registry has already been used in several publications focusing on symptoms and long COVID-19, infection fatality rate and re-infection.Future plansThe data of this large real-world registry provides a valuable resource for various types of research, such as clinical research, epidemiological research or policy assessment as it illustrates the impact of public health policies and overall disease burden of COVID-19.
Objectives: This cohort study including essential workers, assessed the risk and incidence of SARS-CoV-2 infection during the second surge of COVID-19 according to baseline serostatus and occupational sector. Methods: Essential workers were selected from a seroprevalence survey cohort in Geneva, Switzerland and were linked to a state centralized registry compiling SARS-CoV-2 infections. Primary outcome was the number of virologically-confirmed infections from serological assessment (between May and September 2020) to January 25, 2021, according to baseline antibody status and stratified by three pre-defined occupational groups (occupations requiring sustained physical proximity, involving brief regular contact or others). Secondary outcomes included the incidence of infection. Results: 10457 essential workers were included (occupations requiring sustained physical proximity accounted for 3057 individuals, those involving regular brief contact, 3645, and 3755 workers were classified under ″Other essential occupations″). After a follow-up period of over 27 weeks, 5 (0.6%) seropositive and 830 (8.5%) seronegative individuals had a positive SARS-CoV-2 test, with an incidence rate of 0.2 (95% CI 0.1 to 0.6) and 3.2 (95% CI 2.9 to 3.4) cases per person-week, respectively. Incidences were similar across occupational groups. Seropositive essential workers had a 93% reduction in the hazard (HR of 0.07, 95% CI 0.03 to 0.17) of having a positive test during follow-up with no significant between-occupational group difference. Conclusions: A ten-fold reduction in the hazard of being virologically tested positive was observed among anti-SARS-CoV-2 seropositive essential workers regardless of their sector of occupation, confirming the seroprotective effect of a previous SARS-CoV2 exposure at least six months after infection. Keywords: SARS-CoV-2, COVID-19, Reinfection, Essential workers, Occupation
Lung ultrasonography (LUS) is an accurate method of estimating lung congestion but there is ongoing debate on the optimal number of scanning points. The aim of the present study was to compare the reproducibility (i.e. interobserver agreement) and the feasibility (i.e. time consumption) of the two most practiced protocols in patients hospitalized for acute heart failure (AHF). This prospective trial compared 8- and 28-point LUS protocols. Both were performed by an expert–novice pair of sonographers at admission and after 4 to 6 days on patients admitted for AHF. A structured bio-clinical evaluation was simultaneously carried out by the treating physician. The primary outcome was expert-novice interobserver agreement estimated by kappa statistics. Secondary outcomes included time spent on image acquisition and interpretation. During the study period, 43 patients underwent a total of 319 LUS exams. Expert–novice interobserver agreement was moderate at admission and substantial at follow-up for 8-point protocol (weighted kappa of 0.54 and 0.62, respectively) with no significant difference for 28-point protocol (weighted kappa of 0.51 and 0.41; P value for comparison 0.74 at admission and 0.13 at follow-up). The 8-point protocol required significantly less time for image acquisition at admission (mean time difference − 3.6 min for experts, − 5.1 min for novices) and interpretation (− 6.0 min for experts and − 6.3 min for novices; P value < 0.001 for all time comparisons). Similar differences were observed at follow-up. In conclusion, an 8-point LUS protocol was shown to be timesaving with similar reproducibility when compared with a 28-point protocol. It should be preferred for evaluating lung congestion in AHF inpatients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.