Insulin stimulates production of NO in vascular endothelium via activation of phosphatidylinositol (PI) 3-kinase, Akt, and endothelial NO synthase. We hypothesized that insulin resistance may cause imbalance between endothelial vasodilators and vasoconstrictors (e.g., NO and ET-1), leading to hypertension. Twelve-week-old male spontaneously hypertensive rats (SHR) were hypertensive and insulin resistant compared with control Wistar-Kyoto (WKY) rats (systolic blood pressure 202 +/- 11 vs. 132 +/- 10 mmHg; fasting plasma insulin 5 +/- 1 vs. 0.9 +/- 0.1 ng/ml; P < 0.001). In WKY rats, insulin stimulated dose-dependent relaxation of mesenteric arteries precontracted with norepinephrine (NE) ex vivo. This depended on intact endothelium and was blocked by genistein, wortmannin, or N(omega)-nitro-l-arginine methyl ester (inhibitors of tyrosine kinase, PI3-kinase, and NO synthases, respectively). Vasodilation in response to insulin (but not ACh) was impaired by 20% in SHR (vs. WKY, P < 0.005). Preincubation of arteries with insulin significantly reduced the contractile effect of NE by 20% in WKY but not SHR rats. In SHR, the effect of insulin to reduce NE-mediated vasoconstriction became evident when insulin pretreatment was accompanied by ET-1 receptor blockade (BQ-123, BQ-788). Similar results were observed during treatment with the MEK inhibitor PD-98059. In addition, insulin-stimulated secretion of ET-1 from primary endothelial cells was significantly reduced by pretreatment of cells with PD-98059 (but not wortmannin). We conclude that insulin resistance in SHR is accompanied by endothelial dysfunction in mesenteric vessels with impaired PI3-kinase-dependent NO production and enhanced MAPK-dependent ET-1 secretion. These results may reflect pathophysiology in other vascular beds that directly contribute to elevated peripheral vascular resistance and hypertension.
Potenza MA, Marasciulo FL, Tarquinio M, Tiravanti E, Colantuono G, Federici A, Kim J-a, Quon MJ, Montagnani M. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR.
Endothelin-1 (ET-1) is a vasoconstrictor secreted by endothelial cells, which acts as the natural counterpart of the vasodilator nitric oxide (NO). ET-1 contributes to vascular tone and regulates cell proliferation through activation of ETA and ETB receptors. Physical factors such as shear stress, or stimuli including thrombin, epinephrine, angiotensin II, growth factors, cytokines and free radicals enhance secretion of ET-1. By contrast, mediators like nitric oxide (NO), cyclic GMP, atrial natriuretic peptide, and prostacyclin reduce the release of endogenous ET-1. Thus, under normal conditions, the effects of the ET-1 are carefully regulated through inhibition or stimulation of ET-1 release from endothelium. Endothelial dysfunction is one of the earliest landmarks of vascular abnormalities. Altered function of endothelium may result from absolute decrease in bioavailability of NO as well as from relative augment in ET-1 synthesis, release or activity. Imbalance in the production of vasodilator and vasoconstrictor agents may contribute to the onset of hemodynamic disorders. Since dysregulation of the endothelin system is important in the pathogenesis of several cardiovascular diseases, the ETA and ETB receptors are attractive therapeutic targets for disorders associated with elevated ET-1 levels. ET receptor antagonists may be regarded as disease-modifying agents thanks to their ability to preserve endothelial integrity when the endothelin system is overactive. This review summarizes the current knowledge on the role of ET-1 in experimental hypertension and describes recent findings on the involvement of MAPK signalling pathways in ET-1 release in hypertension associated with insulin resistance. Moreover, therapeutic applications of ET-1 receptor blockers are also discussed.
Green tea consumption is associated with reduced cardiovascular mortality in some epidemiological studies. Epigallocatechin gallate (EGCG), a bioactive polyphenol in green tea, mimics metabolic actions of insulin to inhibit gluconeogenesis in hepatocytes. Because signaling pathways regulating metabolic and vasodilator actions of insulin are shared in common, we hypothesized that EGCG may also have vasodilator actions to stimulate production of nitric oxide (NO) from endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.