There is evidence that spalacine, tachyoryctine, and myospalacine mole-rats all communicate with conspecifics through a form of seismic signaling, but the route for the detection of these signals is disputed. It has been proposed that two unusual anatomical adaptations in Spalax allow jaw vibrations to pass to the inner ear via the incus and stapes: a pseudoglenoid (=postglenoid) fossa which accomodates the condylar process of the mandible, and a bony cup, supported by a periotic lamina, through which the incus articulates with the skull. In this study, a combination of dissection and computed tomography was used to examine the ear region in more detail in both Spalax and its subterranean relatives Tachyoryctes and Eospalax, about which much less is known. Tachyoryctes was found to lack a pseudoglenoid fossa, while Eospalax lacks a periotic lamina and bony cup. This shows that these structures need not simultaneously be present for the detection of ground vibrations in mole-rats. Based on the observed anatomy, three hypothetical modes of bone conduction are argued to represent more likely mechanisms through which mole-rats can detect ground vibrations: ossicular inertial bone conduction, a pathway involving sound radiation into the external auditory meatus, and a newly-described fluid pathway between pseudoglenoid fossa and cranial cavity. The caudolateral extension of the tympanic cavity and the presence of a bony cup might represent synapomorphies uniting Spalax and Tachyoryctes, while the loss of the tensor tympani muscle in Spalax and Eospalax may be convergently derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.