A major ecological challenge facing Lake Victoria basin is the influx of chemical contaminants from domestic, hospital, and industrial effluents. Determined levels of perfluoroalkyl acids (PFAAs) in wastewater and sludge from selected wastewater treatment plants (WWTPs) in Kenya are presented and their daily discharge loads calculated for the first time within the Lake Victoria basin. Samples were extracted and separated using solid-phase extraction and ultra-performance liquid chromatography (UPLC)-MS/MS or LC-MS/MS methodology. All sewage sludge and wastewater samples obtained from the WWTPs contained detectable levels of PFAAs in picogram per gram dry weight (d.w.) and in nanogram per liter, respectively. There was variability in distribution of PFAAs in domestic, hospital, and industrial waste with domestic WWPTs observed to contain higher levels. Almost all PFAA homologues of chain length C-6 and above were detected in samples analyzed, with long-chain PFAAs (C-8 and above chain length) being dominant. The discharge from hospital contributes significantly to the amounts of PFAAs released to the municipal water systems and the lake catchment. Using the average output of wastewater from the five WWTPs, a mass load of 1013 mg day(-1) PFAAs per day discharged has been calculated, with the highest discharge obtained at Kisumu City (656 mg day(-1)). The concentration range of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in wastewater was 1.3-28 and 0.9-9.8 ng L(-1) and in sludge samples were 117-673 and 98-683 pg g(-1), respectively.
Per- and polyfluoroalkyl substances (PFAS) are ever-present pollutants in the environment. They are persistent and bio-accumulative with deleterious health effects on biota. This study assesses the levels of PFAS in environmental matrices along the Nairobi River, Kenya. An aggregate of 30 PFAS were determined in water, while 28 PFAS were detected in sediments and plants using solid phase extraction then liquid chromatography–mass spectrometric techniques. In water, higher levels of perfluoroundecanoic acids of up to 39.2 ng L−1 were observed. Sediment and plant samples obtained in the midstream and downstream contained higher levels of perfluorooctanoic acid of up to 39.62 and 29.33 ng g−1, respectively. Comparably, levels of long-chain PFAS were higher in water and sediments than in plants. Sediment/water log distribution of selected PFAS ranged between 2.5 (perfluoroundecanoic acid) and 4.9 (perfluorooctane sulfonate). The level of perfluorooctane sulfonate (1.83 ng L−1) in water is above the acceptable level in surface water posing high human health and ecological risks. The observed PFAS concentrations and distribution were attributed mainly to multi-industries located along the river, among other sources. The knowledge of PFAS occurrence and distribution in Nairobi River, Kenya, provides important information to local regulatory agencies for PFAS pollution control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.