Glyceollins, a group of novel phytoalexins isolated from activated soy, have recently been demonstrated to be novel antiestrogens that bind to the estrogen receptor (ER) and inhibit estrogen-induced tumor progression. Our previous publications have focused specifically on inhibition of tumor formation and growth by the glyceollin mixture, which contains three glyceollin isomers (I, II, and III). Here, we show the glyceollin mixture is also effective as a potential antiestrogenic, therapeutic agent that prevents estrogenstimulated tumorigenesis and displays a differential pattern of gene expression from tamoxifen. By isolating the individual glyceollin isomers (I, II, and III), we have identified the active antiestrogenic component by using competition binding assays with human ER␣ and in an estrogen-responsive element-based luciferase reporter assay. We identified glyceollin I as the active component of the combined glyceollin mixture. Ligand-receptor modeling (docking) of glyceollin I, II, and III within the ER␣ ligand binding cavity demonstrates a unique type II antiestrogenic confirmation adopted by glyceollin I but not isomers II and III. We further compared the effects of glyceollin I to the antiestrogens, 4-hydroxytamoxifen and ICI 182,780 (fulvestrant), in MCF-7 breast cancer cells and BG-1 ovarian cancer cells on 17-estradiol-stimulated expression of progesterone receptor and stromal derived factor-1␣. Our results establish a novel inhibition of ER-mediated gene expression and cell proliferation/ survival. Glyceollin I may represent an important component of a phytoalexin-enriched food (activated) diet in terms of chemoprevention as well as a novel therapeutic agent for hormonedependent tumors.Breast cancer accounts for 25% of all female cancers, making it the most common cancer in women in the western world (Greenlee et al., 2000Lester, 2007 Ali and Coombs, 2002). For patients with hormone receptor-positive breast cancer, several promising endocrine agents are currently available with promising results. Therapies have been developed to reduce estrogen levels or to block signaling through estrogen receptors (ER) (Pink and Jordan, 1996;Howell, 2006). These agents include tamoxifen, a selective estrogen
Uncovering systemic racism and ensuring the equitable inclusion and respect of all individuals are at the core of the current public outcries. This editorial is a call to action for the chemistry community to adopt practices and research scholarship that respond to the needs of diversity, equity, inclusion, and respect.
Glyceollins are soy-derived phytoalexins that have been proposed to be candidate cancer preventive compounds. The effect of the glyceollins on prostate cancer is unknown. The present study examined the molecular effects of soy phytoalexin, glyceollins, on human prostate cancer cell LNCaP to further elucidate its potential effects on prostate cancer prevention. We found that the glyceollins inhibited LNCaP cell growth similar to that of the soy isoflavone genistein. The growth inhibitory effects of the glyceollins appeared to be due to an inhibition of G1/S progression and correlated with an up-regulation of cyclin-dependent kinase inhibitor 1 A and B mRNA and protein levels. By contrast, genistein only up-regulates cyclin-dependent kinase inhibitor 1A. In addition, glyceollin treatments led to down-regulated mRNA levels for androgen responsive genes. In contrast to genistein, this effect of glyceollins on androgen responsive genes appeared to be mediated through modulation of an estrogen- but not androgen-mediated pathway. Hence, the glyceollins exerted multiple effects on LNCaP cells that may be considered cancer preventive and the mechanisms of action appeared to be different from other soy-derived phytochemicals.
Daidzein (1) is a natural estrogenic isoflavone. We report here that 1 can be transformed into antiestrogenic ligands by simple alkyl substitutions of the 7-hydroxyl hydrogen. To test the effect of such structural modifications on the hormonal activities of the resulting compounds, a series of daidzein analogues have been designed and synthesized. When MCF-7 cells were treated with the analogues, those resulting from hydrogen substitution by isopropyl (3d), isobutyl (3f), cyclopentyl (3g), and pyrano-(2), inhibited cell proliferation, estrogen-induced transcriptional activity, and estrogen receptor (ER) regulated progesterone receptor (PgR) gene expression. However, methyl (3a) and ethyl (3b) substitutions of the hydroxyl proton only led to moderate reduction of the estrogenic activities. These results demonstrated the structural requirements for the transformation of daidzein from an ER agonist to an antagonist. The most effective analogue, 2 was found to reduce in vivo estrogen stimulated MCF-7 cell tumorigenesis using a xenograft mouse model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.