Here we show that transplantation of autologous human hematopoietic fetal liver CD34+ cells into NOD/SCID mice previously implanted with human fetal thymic and liver tissues results in long-term, systemic human T-cell homeostasis. In addition, these mice show systemic repopulation with human B cells, monocytes and macrophages, and dendritic cells (DCs). T cells in these mice generate human major histocompatibility complex class I- and class II-restricted adaptive immune responses to Epstein-Barr virus (EBV) infection and are activated by human DCs to mount a potent T-cell immune response to superantigens. Administration of the superantigen toxic shock syndrome toxin 1 (TSST-1) results in the specific systemic expansion of human Vbeta2+ T cells, release of human proinflammatory cytokines and localized, specific activation and maturation of human CD11c+ dendritic cells. This represents the first demonstration of long-term systemic human T-cell reconstitution in vivo allowing for the manifestation of the differential response by human DCs to TSST-1.
BackgroundWorldwide, vaginal transmission now accounts for more than half of newly acquired HIV-1 infections. Despite the urgency to develop and implement novel approaches capable of preventing HIV transmission, this process has been hindered by the lack of adequate small animal models for preclinical efficacy and safety testing. Given the importance of this route of transmission, we investigated the susceptibility of humanized mice to intravaginal HIV-1 infection.Methods and FindingsWe show that the female reproductive tract of humanized bone marrow–liver–thymus (BLT) mice is reconstituted with human CD4+ T and other relevant human cells, rendering these humanized mice susceptible to intravaginal infection by HIV-1. Effects of HIV-1 infection include CD4+ T cell depletion in gut-associated lymphoid tissue (GALT) that closely mimics what is observed in HIV-1–infected humans. We also show that pre-exposure prophylaxis with antiretroviral drugs is a highly effective method for preventing vaginal HIV-1 transmission. Whereas 88% (7/8) of BLT mice inoculated vaginally with HIV-1 became infected, none of the animals (0/5) given pre-exposure prophylaxis of emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF) showed evidence of infection (Chi square = 7.5, df = 1, p = 0.006). ConclusionsThe fact that humanized BLT mice are susceptible to intravaginal infection makes this system an excellent candidate for preclinical evaluation of both microbicides and pre-exposure prophylactic regimens. The utility of humanized mice to study intravaginal HIV-1 transmission is particularly highlighted by the demonstration that pre-exposure prophylaxis can prevent intravaginal HIV-1 transmission in the BLT mouse model.
Intrarectal infection between men who have sex with men represents a predominant form of human immunodeficiency virus (HIV) transmission in developed countries. Currently there are no adequate small animal models that recapitulate intrarectal HIV transmission. Here we demonstrate that human lymphocytes generated in situ from hematopoietic stem cells reconstitute the gastrointestinal tract of humanized mice with human CD4+ T cells rendering them susceptible to intrarectal HIV transmission. HIV infection after a single intrarectal inoculation results in systemic infection with depletion of CD4+ T cells in gut-associated lymphoid tissue and other pathologic sequela that closely mimics those observed in HIV infected humans. This novel model provides the basis for the development and evaluation of novel approaches aimed at immune reconstitution of human gut-associated lymphoid tissue and for the development, testing, and implementation of microbicides to prevent intrarectal HIV-1 transmission.
Summary
Human cytomegalovirus (HCMV) continues to be a significant cause of morbidity and mortality in organ transplant recipients despite the availability of antiviral therapy. Considerable controversy exists regarding the use of granulocyte-colony stimulating factor (G-CSF) mobilized blood products from HCMV seropositive donors during stem cell transplantation (SCT) and in patients receiving granulocyte transfusions to treat neutropenia. In order to understand mechanisms of HCMV transmission to patients receiving G-CSF mobilized blood products, we generated a novel NOD-scid IL2Rγcnull humanized mouse model in which HCMV establishes a latent infection in human hematopoietic lineage cells. In this model, G-CSF induces the reactivation of latent HCMV in monocytes/macrophages that have migrated into organ tissues. These results suggest that the use of G-CSF mobilized blood products from seropositive donors pose an elevated risk for HCMV transmission to recipients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.