The p42/p44 mitogen-activated protein kinase (MAPK) cascade includes Ras, Raf, Mek, and Erk MAPK. To determine the effect of a full knockout at a single level of this signaling pathway in mammals, and to investigate functional redundancy between Mek1 and Mek2, we disrupted these genes in murine and human epidermis. Loss of either protein alone produced no phenotype, whereas combined Mek1/2 deletion in development or adulthood abolished Erk1/2 phosphorylation and led to hypoproliferation, apoptosis, skin barrier defects, and death. Conversely, a single copy of either allele was sufficient for normal development. Combined Mek1/2 loss also abolished Raf-induced hyperproliferation. Human tissue deficient in either Mek isoform was normal, whereas loss of both proteins led to hypoplasia, which was rescued by active Erk2 expression. These data indicate that Mek1/2 are functionally redundant in the epidermis, where they act as a linear relay in the MAPK pathway to mediate development and homeostasis.
A subtractive cloning procedure was used to characterize the molecular changes involved in transformation of normal myoblasts to rhabdomyosarcoma (RMS) cells. Here we describe the cloning of DRAL, a novel LIM-domain protein expressed in primary myoblasts but down-regulated in the RMS cell line RD. DRAL is a LIM-only protein with five LIM domains whereby one LIM domain consists only of the second half of the consensus motif. Interestingly, down-regulation of DRAL was not confined to the RD RMS cells, but was a phenomenon extended to other RMS cell lines of both embryonal and alveolar subtype, and to some breast cancer cell lines. Analysis of the expression pattern in normal human tissues revealed that DRAL is expressed at high levels in the heart, suggesting an important function in the specification of the terminally differentiated phenotype of heart muscle cells. Immunofluorescence studies using an antibody directed against recombinant DRAL localized the protein predominantly in the nucleus of cultured cells. On the basis of these results, we conclude that down-regulation of DRAL correlates with the tumor phenotype of RMS cells.
DRAL is a four and a half LIM domain protein identified because of its differential expression between normal human myoblasts and the malignant counterparts, rhabdomyosarcoma cells. In the current study, we demonstrate that transcription of the DRAL gene can be stimulated by p53, since transient expression of functional p53 in rhabdomyosarcoma cells as well as stimulation of endogenous p53 by ionizing radiation in wild-type cells enhances DRAL mRNA levels. In support of these observations, five potential p53 target sites could be identified in the promoter region of the human DRAL gene. To obtain insight into the possible functions of DRAL, ectopic expression experiments were performed. Interestingly, DRAL expression efficiently triggered apoptosis in three cell lines of different origin to the extent that no cells could be generated that stably overexpressed this protein. However, transient transfection experiments as well as immunofluorescence staining of the endogenous protein allowed for the localization of DRAL in different cellular compartments, namely cytoplasm, nucleus, focal contacts, as well as Z-discs and to a lesser extent the M-bands in cardiac myofibrils. These data suggest that downregulation of DRAL might be involved in tumor development. Furthermore, DRAL expression might be important for heart function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.