The aquaculture sector is anticipated to be a keystone in food production systems in the coming decades. However, it is associated with potentially important environmental damages caused by its contribution to eutrophication or climate change, for example. To comprehensively quantify those impacts, life cycle assessment (LCA) studies have been conducted on several seafood farming systems for the past 15 years. But, what major findings and common trends can we draw from this pool of studies? What can we learn to provide recommendations to decision and policymakers in the aquaculture sector? To address these questions, we performed a critical review of 65 LCA studies of aquaculture systems from the open literature. We conducted quantitative analyses to explore which impacts can be identified as dominating and to compare different types of aquaculture systems. Our results evidenced that the feed production is a key driver for climate change, acidification, cumulative energy use and net primary production use, while the farming process is a key driver for eutrophication. We also found that different aquaculture systems and technology components may exert considerably different environmental impacts. Based on identified patterns and comparisons, we therefore provided specific recommendations to aquaculture stakeholders for future policy and system development. Overall, the analysis of existing studies demonstrates that important insights can be gained by applying LCA to aquaculture systems, and, to move towards an environmentally sustainable aquaculture sector, we recommend its systematic use in the design of new aquaculture systems or policies, and/or in the evaluation and optimization of existing ones.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
To move toward environmentally sustainable transport systems, electric vehicles (EVs) are increasingly seen as viable alternatives to internal combustion vehicles (ICVs). To ensure effectiveness of such deployment, holistic assessments of environmental impacts can help decision-makers determine optimized urban strategies in a long-term perspective. However, explicit guidance and conduct of such assessments are currently missing. Here, we therefore propose a framework using life cycle assessment that enables the quantification of environmental impacts of a transport system at full urban scale from a fleet-based, foresight perspective. The analysis of the passenger car fleet development in the city of Copenhagen for the years 2016-2030 is used as a proof-of-concept. We modeled and compared five powertrain technologies, and we assessed four fleet-based scenarios for the entire city. Our results showed relative environmental benefits from range-extended and fuel-cell EVs over ICVs and standard EVs. These results were found to be sensitive to local settings, like electricity grid mix, which could alter the relative environmental performances across EV technologies. The comprehensive framework developed here can be applied to other geographic areas and contexts to assess the environmental sustainability of transport systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.