BackgroundNigeria accounts for a significant proportion of the global drug-resistant tuberculosis (DR-TB) burden, a large proportion of which goes untreated. Different models for managing DR-TB treatment with varying levels of hospitalization are in use across Nigeria, however costing evidence is required to guide the scale up of DR-TB care. We aimed to estimate and compare the costs of different DR-TB treatment and care models in Nigeria.MethodsWe estimated the costs associated with three models of DR-TB treatment and care: Model (A) patients are hospitalized throughout the 8-month intensive phase, Model (B) patients are partially hospitalized during the intensive phase and Model (C) is entirely ambulatory. Costs of treatment, in-patient and outpatient care and diagnostic and monitoring tests were collected using a standardized data collection sheet from six sites through an ingredient’s approach and cost models were based on the Nigerian National Tuberculosis, Leprosy and Buruli Ulcer Guideline - Sixth Edition (2014) and Guideline for programmatic and clinical management of drug-resistant tuberculosis in Nigeria (2015).ResultsAssuming adherence to the Nigerian DR-TB guidelines, the per patient cost of Model A was $18,528 USD, Model B $15,159 USD and Model C $9425 USD. Major drivers of cost included hospitalization (Models A and B) and costs of out-patient consultations and supervision (Model C).ConclusionUtilizing a decentralized ambulatory model, is a more economically viable approach for the expansion of DR-TB care in Nigeria, given that patient beds for DR-TB treatment and care are limited and costs of hospitalized treatment are considerably more expensive than ambulatory models. Scale-up of less expensive ambulatory care models should be carefully considered in particular, when treatment efficacy is demonstrated to be similar across the different models to allow for patients not requiring hospitalization to be cared for in the least expensive way.
Isoniazid preventive therapy (IPT) is the administration of isoniazid (INH) to people with latent tuberculosis (TB) infection (LTBI) to prevent progression to active TB disease. Despite being life-saving for human immunodeficiency virus (HIV)-infected persons who do not have active TB, IPT is poorly implemented globally due to misconceptions shared by healthcare providers and policy makers. However, amongst HIV-infected patients especially those living in resource-limited settings with a high burden of TB, available evidence speaks for IPT: Among HIV-infected persons, active TB- the major contraindication to IPT, can be excluded with symptom screening; chest X-ray and tuberculin skin testing are unreliable and often lead to logistic delays resulting in increased numbers of people with LTBI progressing to active TB; the use of IPT has not been found to increase the risk of the development of INH mono-resistance; IPT is cost-effective and cheaper than the cost of treating cases of active TB that would develop without IPT; ART and IPT have an additive effect on the prevention of TB, and both are safe and beneficial even in children. In order to sustain the recorded gains from ART scale-up and to further reduce TB-related morbidity and mortality, more efforts are needed to scale-up IPT implementation globally.
Background Globally, drug resistant tuberculosis (DR-TB) continues to be a public health threat. Nigeria, which accounts for a significant proportion of the global burden of rifampicin/multi-drug resistant-TB (RR/MDR-TB) had a funding gap of $168 million dollars for TB treatment in 2018. Since 2010, Nigeria has utilized five different models of care for RR/MDR-TB (Models A-E); Models A, B and C based on a standardized WHO-approved treatment regimen of 20–24 months, were phased out between 2015 and 2019 and replaced by Models D and E. Model D is a fully ambulatory model of 9–12 months during which a shorter treatment regimen including a second-line injectable agent is utilized. Model E is identical to Model D but has patients hospitalized for the first four months of care while Model F which is to be introduced in 2020, is a fully ambulatory, oral bedaquiline-containing shorter treatment regimen of 9–12 months. Treatment models for RR/MDR-TB of 20–24 months duration have had treatment success rates of 52–66% while shorter treatment regimens have reported success rates of 85% and above. In addition, replacing the second-line injectable agent in a shorter treatment regimen with bedaquiline has been found to further improve treatment success in patients with fluoroquinolone-susceptible RR/MDR-TB. Reliable cost data for RR/MDR-TB care are limited, specifically costs of models that utilize shorter treatment regimens and which are vital to guide Nigeria through the provision of RR/MDR-TB care at scale. We therefore conducted a cost analysis of shorter treatment regimens in use and to be used in Nigeria (Models D, E and F) and compared them to three models of longer duration utilized previously in Nigeria (Models A, B and C) to identify any changes in cost from transitioning from Models A-C to Models D-F and opportunities for cost savings. Methods We obtained costs for TB diagnostic and monitoring tests, in-patient and out-patient care from a previous study, inflated these costs to 2019 NGN and then converted to 2020 USD. We obtained other costs from the average of six health facilities and drug costs from the global drug facility. We modeled treatment on strict adherence to two Nigerian National guidelines for programmatic and clinical management of drug-resistant tuberculosis. Results We estimated that the total costs of care from the health sector perspective for Models D, E and F were $4,334, $7,705 and $3,420 respectively. This is significantly lower than the costs of Models A, B and C which were $14,781, $12, 113, $7,572 respectively. Conclusion Replacing Models A–C with Models D and E reduced the costs of RR/MDR-TB care in Nigeria by approximately $5,470 (48%) per patient treated and transitioning from Models D and E to Model F would result in further cost savings of $914 to $4,285 (21 to 56%) for every patient placed on Model F. If the improved outcomes of patients managed using bedaquiline-containing shorter treatment regimens in other countries can be attained in Nigeria, Model F would be the recommended model for the scale up of RR/MDR-TB care in Nigeria.
Background Nigeria has a high burden of hepatitis B virus (HBV) infection, commonly acquired through vertical transmission. However, there is a lack of an efficient surveillance system for monitoring and understanding the epidemiology of HBV among pregnant women. Building on a previous review on the prevalence of HBV in Nigeria (2000–2013), we conducted a systematic review and meta-analysis of HBV prevalence among pregnant women in Nigeria. Methods Four electronic databases PubMed, Embase, Global Health, and Scopus were systematically searched from January 2014 to February 2021. We also searched the African Journal Online and manually scanned the reference lists of the identified studies for potentially eligible articles. Observational studies that reported the prevalence of HBsAg and/or HBeAg among pregnant women in peer-reviewed journals were included in the study. We performed a meta-analysis using a random-effects model. We defined HBV infection as a positive test to HBsAg. Results From the 158 studies identified, 20 studies with a total sample size of 26, 548 were included in the meta-analysis. The pooled prevalence of HBV infection among pregnant women across the studies was 6.49% (95% confidence interval [CI] = 4.75–8.46%; I2 = 96.7%, p = 0.001; n = 20). The prevalence of HBV was significantly lower among pregnant women with at least secondary education compared with those with no education or primary education (prevalence ratio = 0.7, 95% CI = 0.58–0.87; n = 10). However, the prevalence of HBV was not significantly different by age, religion, marital status, or tribe. The prevalence of HBV was not significantly different among pregnant women with previous surgery, blood transfusion, multiple lifetime sex partners, tribal marks, tattoos, scarification, or sexually transmitted infections, compared with those without these risk factors. From a total sample size of 128 (n = 7), the pooled prevalence of HBeAg among HBV-infected pregnant women was 14.59% (95% CI = 4.58–27.99%; I2 = 65.5%, p = 0.01). Subgroup analyses of HBV infection by study region and screening method, and meta-regression analysis of the study year, sample size, and quality rating were not statistically significant. Conclusions There is an intermediate endemicity of HBV infection among pregnant women in Nigeria. Interventions, such as routine antenatal HBV screening, antiviral prophylaxis for eligible pregnant women, and infant HBV vaccination should be scaled up for the prevention of perinatal transmission of HBV infection in Nigeria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.