Hyperphosphorylated tau makes up the filamentous intracellular inclusions of several neurodegenerative diseases, including Alzheimer's disease 1. In the disease process neuronal tau inclusions first appear in transentorhinal cortex, from where they appear to spread to hippocampal formation and neocortex 2. Cognitive impairment becomes manifest when inclusions reach the hippocampus, with abundant neocortical tau inclusions and extracellular β-amyloid deposits being the defining pathological hallmarks of Alzheimer's disease. Abundant tau inclusions, in the absence of β-amyloid deposits, define Pick's disease, progressive supranuclear palsy, corticobasal degeneration and other diseases 1. Tau mutations cause familial forms of frontotemporal dementia, establishing that tau protein dysfunction is sufficient to cause neurodegeneration and dementia 3-5. Thus, transgenic mice expressing mutant (e.g. P301S) human tau in nerve cells exhibit the essential features of tauopathies, including neurodegeneration and abundant filaments made of hyperphosphorylated tau protein 6,7. In contrast, mouse lines expressing single isoforms of wild-type human tau do not produce tau filaments or display neurodegeneration 7,8. Here we have used tau-expressing lines to investigate whether experimental tauopathy can be transmitted. We show that the injection of brain extract from mutant P301S tau-expressing mice into the brain of transgenic wild-type tau-expressing animals induces the assembly of wild-type human tau into filaments and the spreading of pathology from the site of injection to neighbouring brain regions.
Filamentous inclusions made of hyperphosphorylated tau are characteristic of numerous human neurodegenerative diseases, including Alzheimer's disease, tangle-only dementia, Pick disease, argyrophilic grain disease (AGD), progressive supranuclear palsy, and corticobasal degeneration. In Alzheimer's disease and AGD, it has been shown that filamentous tau appears to spread in a stereotypic manner as the disease progresses. We previously demonstrated that the injection of brain extracts from human mutant P301S tau-expressing transgenic mice into the brains of mice transgenic for wild-type human tau (line ALZ17) resulted in the assembly of wild-type human tau into filaments and the spreading of tau inclusions from the injection sites to anatomically connected brain regions. Here we injected brain extracts from humans who had died with various tauopathies into the hippocampus and cerebral cortex of ALZ17 mice. Argyrophilic tau inclusions formed in all cases and following the injection of the corresponding brain extracts, we recapitulated the hallmark lesions of AGD, PSP and CBD. Similar inclusions also formed after intracerebral injection of brain homogenates from human tauopathies into nontransgenic mice. Moreover, the induced formation of tau aggregates could be propagated between mouse brains. These findings suggest that once tau aggregates have formed in discrete brain areas, they become self-propagating and spread in a prion-like manner.
Intracellular inclusions composed of hyperphosphorylated filamentous tau are a hallmark of Alzheimer’s disease, progressive supranuclear palsy, Pick’s disease and other sporadic neurodegenerative tauopathies. Recent in vitro and in vivo studies have shown that tau aggregates do not only seed further tau aggregation within neurons, but can also spread to neighbouring cells and functionally connected brain regions. This process is referred to as ‘tau propagation’ and may explain the stereotypic progression of tau pathology in the brains of Alzheimer’s disease patients. Here, we describe a novel in vivo model of tau propagation using human P301S tau transgenic mice infused unilaterally with brain extract containing tau aggregates. Infusion-related neurofibrillary tangle pathology was first observed 2 weeks post-infusion and increased in a stereotypic, time-dependent manner. Contralateral and anterior/posterior spread of tau pathology was also evident in nuclei with strong synaptic connections (efferent and afferent) to the site of infusion, indicating that spread was dependent on synaptic connectivity rather than spatial proximity. This notion was further supported by infusion-related tau pathology in white matter tracts that interconnect these regions. The rapid and robust propagation of tau pathology in this model will be valuable for both basic research and the drug discovery process.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-014-1254-6) contains supplementary material, which is available to authorized users.
Alzheimer's disease presents morphologically with senile plaques, primarily made of extracellular amyloid- (A) deposits, and neurofibrillary lesions, which consist of intracellular aggregates of hyperphosphorylated tau protein. To study the in vivo induction of tau pathology, dilute brain extracts from aged A-depositing APP23 transgenic mice were intracerebrally infused in young B6/P301L tau transgenic mice. Six months after the infusion, tau pathology was induced in the injected hippocampus but also in brain regions well beyond the injection sites such as the entorhinal cortex and amygdala, areas with neuronal projection to the injection site. No or only modest tau induction was observed when brain extracts from aged nontransgenic control mice and aged taudepositing B6/P301L transgenic mice were infused. Alzheimer's disease (AD) is a neurodegenerative disorder that is pathologically characterized by senile plaques, primarily composed of extracellular deposits of amyloid- (A) peptide, and neurofibrillary tangles, composed of intracellular aggregates of hyperphosphorylated tau protein. 1The amyloid cascade hypothesis of AD pathogenesis holds that accumulation of polymerized forms of A in the brain is an early and critical event that triggers a cascade of events leading to hyperphosphorylation and somatodendritic segregation of tau and formation of neurofibrillary tangles. 2Consistent with this view, previous in vivo studies have revealed an interaction between A and tau pathology in vulnerable brain regions. 3-5Previously we have shown that intracerebral injection of dilute A-containing human and murine brain extracts induces cerebral amyloidosis in young, predepositing amyloid precursor protein (APP23) transgenic mice. 6 In the present study we examined whether the same A-containing brain extracts would also induce tau pathology in young B6/P301L mutated tau transgenic mice and thus confirm and expand previous studies in which synthetic A was intracerebrally infused in tau transgenic mice. 4 However, in contrast to this latter study in which a high concentration of fibrillary synthetic A was injected
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.