Respiratory syncytial virus (RSV) is a major cause of respiratory illness in infants, immunocompromised patients, and the elderly. New antiviral agents would be important tools in the treatment of acute RSV disease. RSV encodes its own RNA-dependent RNA polymerase that is responsible for the synthesis of both genomic RNA and subgenomic mRNAs. The viral polymerase also cotranscriptionally caps and polyadenylates the RSV mRNAs at their 5 and 3 ends, respectively. We have previously reported the discovery of the first nonnucleoside transcriptase inhibitor of RSV polymerase through high-throughput screening. Here we report the design of inhibitors that have improved potency both in vitro and in antiviral assays and that also exhibit activity in a mouse model of RSV infection. We have isolated virus with reduced susceptibility to this class of inhibitors. The mutations conferring resistance mapped to a novel motif within the RSV L gene, which encodes the catalytic subunit of RSV polymerase. This motif is distinct from the catalytic region of the L protein and bears some similarity to the nucleotide binding domain within nucleoside diphosphate kinases. These findings lead to the hypothesis that this class of inhibitors may block synthesis of RSV mRNAs by inhibiting guanylylation of viral transcripts. We show that short transcripts produced in the presence of inhibitor in vitro do not contain a 5 cap but, instead, are triphosphorylated, confirming this hypothesis. These inhibitors constitute useful tools for elucidating the molecular mechanism of RSV capping and represent valid leads for the development of novel anti-RSV therapeutics.
The hepatitis C virus (HCV) NS3 protease is essential for polyprotein maturation and viral propagation, and it has been proposed as a suitable target for antiviral drug discovery. An N-terminal hexapeptide cleavage product of a dodecapeptide substrate identified as a weak competitive inhibitor of the NS3 protease activity was optimized to a potent and highly specific inhibitor of the enzyme. The effect of this potent NS3 protease inhibitor was evaluated on replication of subgenomic HCV RNA and compared with interferon-␣ (IFN-␣), which is currently used in the treatment of HCV-infected patients. Treatment of replicon-containing cells with the NS3 protease inhibitor or IFN-␣ showed a dose-dependent decrease in subgenomic HCV RNA that reached undetectable levels following a 14-day treatment. Kinetic studies in the presence of either NS3 protease inhibitor or IFN-␣ also revealed similar profiles in HCV RNA decay with half-lives of 11 and 14 h, respectively. The finding that an antiviral specifically targeting the NS3 protease activity inhibits HCV RNA replication further validates the NS3 enzyme as a prime target for drug discovery and supports the development of NS3 protease inhibitors as a novel therapeutic approach for HCV infection. HCV1 as a member of the Flaviviridae family is the major etiological agent of non-A, non-B viral hepatitis and an important cause of chronic liver disease leading to cirrhosis and hepatocellular carcinoma in humans (1, 2). An estimated 170 million people worldwide are infected with HCV, and end stage liver disease associated with this virus is now the leading cause of liver transplantation in the western world (3). Many patients treated with IFN-␣ alone or with a combination of IFN-␣ plus ribavirin fail to show a sustained virologic response and currently have no other treatment option. Given the high prevalence of the infection, HCV has become the focus of intensive research. Originally cloned in 1989 (1), the viral RNA genome is now well characterized. The ϳ9600-nucleotide genome is of positive polarity that encodes a ϳ3000-amino acid polyprotein, which is the precursor of at least 10 mature viral proteins: C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B. C is the nucleocapsid protein that binds and encapsulates the viral RNA genome (4), E1 and E2 are the virion glycoproteins, and p7 is of unknown function (5). The NS2 to NS5B proteins inclusively are thought to comprise nonstructural proteins involved in replication and polyprotein processing (6). The individual proteins are processed from the polyprotein by a combination of host and viral proteases. Host signal peptidases are responsible for the cleavages between C, E1, E2, p7, and NS2. The cleavage between NS2 and NS3 is performed in an autoproteolytic manner by the metal-dependent protease NS2/3 (7, 8). The proteolytic release of NS4A, NS4B, NS5A, and NS5B is catalyzed by the multifunctional NS3 enzyme, which in conjunction with the mature NS4A cofactor mediates efficient processing (for a review, see Ref. 9). The large polyprotein open...
The crystal structure of HIV-2 protease in complex with a reduced amide Inhibitor
The in vitro resistance profile of BI 201335 was evaluated through selection and characterization of variants in genotype 1a (GT 1a) and genotype 1b (GT 1b) replicons. NS3 R155K and D168V were the most frequently observed resistant variants. Phenotypic characterization of the mutants revealed shifts in sensitivity specific to BI 201335 that did not alter susceptibility to alpha interferon. In contrast to macrocyclic and covalent protease inhibitors, changes at V36, T54, F43, and Q80 did not confer resistance to BI 201335.T he hepatitis C virus (HCV)-encoded NS3 protease is essential for viral replication and has long been considered an attractive target in drug design efforts (3, 5). NS3 protease inhibitors (PIs) can induce substantial reductions in HCV RNA plasma levels, and several candidates have progressed through clinical development to offer improved treatment options (for a review, see reference 27). Two PIs, boceprevir and telaprevir, were recently approved for use in combination with pegylated interferon (Peg-IFN) and ribavirin (1,6,7,19). The selection of drug-resistant variants is commonly observed in patients experiencing virologic rebound during treatment with PIs (16,[20][21][22]24).BI 201335 is a potent HCV NS3/4A PI (15, 28) currently in phase 3 clinical trials in combination with Peg-IFN and ribavirin as well as phase 2 assessment with other HCV direct acting antivirals in IFN-sparing regimens. BI 201335 exhibited a profound reduction in viral load when administered for 14 days as monotherapy in treatment-naïve patients or for 28 days in combination with Peg-IFN and ribavirin in treatment-experienced patients (16). In these studies, viral breakthrough was observed in most patients on monotherapy, whereas breakthrough was less frequent in patients undergoing combination treatment. Distinct resistant NS3 variants R155K and D168V predominated for genotype 1a and 1b (GT 1a and GT 1b), respectively (8,16).This study was designed to evaluate the genotypic and phenotypic profiles of the resistant variants that emerged during in vitro selection in the presence of BI 201335 in the replicon system and to relate these results to clinical observations. Replicons resistant to BI 201335 were selected in GT 1a H77 and GT 1b CON-1 replicon cell lines in the presence of 2 concentrations (100ϫ and 1,000ϫ drug concentration required to reduce HCV RNA or the luciferase reporter levels by 50% [EC 50 ]) of drug for 3 weeks and G-418 as previously described (9). With the lower concentration of BI 201335, resistant variants encoding NS3 changes at residues 155, 156, and 168 were selected with the GT 1b replicon, with D168G as the predominant variant (55%). R155K was the predominant variant (68%) selected with the GT 1a replicon (Table 1) and is consistent with the predominant variant selected in GT 1a HCV-infected patients (16). At the higher concentration of BI 201335, essentially only D168 variants were selected with D168 A and V as the predominant variants in both genotypes.In order to confirm that the mutations ob...
Tumor Necrosis Factor receptor-associated factor-3 (TRAF3) is a central mediator important for inducing type I interferon (IFN) production in response to intracellular double-stranded RNA (dsRNA). Here, we report the identification of Sec16A and p115, two proteins of the ER-to-Golgi vesicular transport system, as novel components of the TRAF3 interactome network. Notably, in non-infected cells, TRAF3 was found associated with markers of the ER-Exit-Sites (ERES), ER-to-Golgi intermediate compartment (ERGIC) and the cis-Golgi apparatus. Upon dsRNA and dsDNA sensing however, the Golgi apparatus fragmented into cytoplasmic punctated structures containing TRAF3 allowing its colocalization and interaction with Mitochondrial AntiViral Signaling (MAVS), the essential mitochondria-bound RIG-I-like Helicase (RLH) adaptor. In contrast, retention of TRAF3 at the ER-to-Golgi vesicular transport system blunted the ability of TRAF3 to interact with MAVS upon viral infection and consequently decreased type I IFN response. Moreover, depletion of Sec16A and p115 led to a drastic disorganization of the Golgi paralleled by the relocalization of TRAF3, which under these conditions was unable to associate with MAVS. Consequently, upon dsRNA and dsDNA sensing, ablation of Sec16A and p115 was found to inhibit IRF3 activation and anti-viral gene expression. Reciprocally, mild overexpression of Sec16A or p115 in Hec1B cells increased the activation of IFNβ, ISG56 and NF-κB -dependent promoters following viral infection and ectopic expression of MAVS and Tank-binding kinase-1 (TBK1). In line with these results, TRAF3 was found enriched in immunocomplexes composed of p115, Sec16A and TBK1 upon infection. Hence, we propose a model where dsDNA and dsRNA sensing induces the formation of membrane-bound compartments originating from the Golgi, which mediate the dynamic association of TRAF3 with MAVS leading to an optimal induction of innate immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.