Wallerian degeneration in the CNS and PNS consists of degradation and phagocytosis of axons and their myelin sheath distal to the site of injury. This process of degeneration, which requires an effective macrophage response, occurs rapidly in peripheral nerves but is slow in the CNS. Rapid Wallerian degeneration in peripheral nerves may contribute to subsequent axonal regeneration. We show that there is a marked increase in mRNA expression of three pro-inflammatory molecules, the chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha), and the cytokine interleukin-1beta (IL-1beta), in the mouse sciatic nerve but not in the spinal cord undergoing Wallerian degeneration. Neutralizing MCP-1, MIP-1alpha and IL-1beta in the lesioned sciatic nerve with function-blocking antibodies suppressed macrophage responses and myelin clearance. Injecting recombinant MCP-1, MIP-1alpha or IL-1beta into the normal, uninjured spinal cord triggered the expression of a number of chemokines and cytokines. Furthermore, injecting recombinant MCP-1/MIP-1alpha or IL-1beta into the dorsal column of the spinal cord undergoing Wallerian degeneration triggered rapid macrophage/microglial activation and myelin clearance. These findings provide direct evidence that MCP-1, MIP-1alpha and IL-1beta are important regulators of macrophage responses that lead to rapid myelin breakdown and clearance in Wallerian degeneration.
In humans and rodents the adult spinal cord harbors neural stem cells located around the central canal. Their identity, precise location, and specific signaling are still ill-defined and controversial. We report here on a detailed analysis of this niche. Using microdissection and glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP) transgenic mice, we demonstrate that neural stem cells are mostly dorsally located GFAP(+) cells lying ependymally and subependymally that extend radial processes toward the pial surface. The niche also harbors doublecortin protein (Dcx)(+) Nkx6.1(+) neurons sending processes into the lumen. Cervical and lumbar spinal cord neural stem cells maintain expression of specific rostro-caudal Hox gene combinations and the niche shows high levels of signaling proteins (CD15, Jagged1, Hes1, differential screening-selected gene aberrative in neuroblastoma [DAN]). More surprisingly, the niche displays mesenchymal traits such as expression of epithelial-mesenchymal-transition zinc finger E-box-binding protein 1 (ZEB1) transcription factor and smooth muscle actin. We found ZEB1 to be essential for neural stem cell survival in vitro. Proliferation within the niche progressively ceases around 13 weeks when the spinal cord reaches its final size, suggesting an active role in postnatal development. In addition to hippocampus and subventricular zone niches, adult spinal cord constitutes a third central nervous system stem cell niche with specific signaling, cellular, and structural characteristics that could possibly be manipulated to alleviate spinal cord traumatic and degenerative diseases.
To identify candidate genes that may be involved in motoneuron degeneration, we combined laser capture microdissection with microarray technology. Gene expression in motoneurons was analyzed during the progression of the disease in transgenic SOD1(G93A) mice that develop motoneuron loss. Three major observations were made: first, there was only a small number of genes that were differentially expressed in motoneurons at a pre-symptomatic age (27 out of 34 000 transcripts). Secondly, there is an early specific up-regulation of the gene coding for the intermediate filament vimentin that is increased even further during disease progression. Using in situ hybridization and immunohistochemical analysis, we show that vimentin expression was not only elevated in motoneurons but that the protein formed inclusions in the motoneuron cytoplasm. Thirdly, a time-course analysis of the motoneurons at a symptomatic age (90 and 120 days) showed a modest de-regulation of only a few genes associated with cell death pathways; however, a massive up-regulation of genes involved in cell growth and/or maintenance was observed. This is the first description of the gene profile of SOD1(G93A) motoneurons during disease progression and unexpectedly, no widespread induction of cell death-associated genes was detected in motoneurons of SOD1(G93A) mice.
Adult human and rodent brains contain neural stem and progenitor cells, and the presence of neural stem cells in the adult rodent spinal cord has also been described. Here, using electron microscopy, expression of neural precursor cell markers, and cell culture, we investigated whether neural precursor cells are also present in adult human spinal cord. In well-preserved nonpathological post-mortem human adult spinal cord, nestin, Sox2, GFAP, CD15, Nkx6.1, and PSA-NCAM were found to be expressed heterogeneously by cells located around the central canal. Ultrastructural analysis revealed the existence of immature cells close to the ependymal cells, which display characteristics of type B and C cells found in the adult rodent brain subventricular region, which are considered to be stem and progenitor cells, respectively. Completely dissociated spinal cord cells reproducibly formed Sox2(+) nestin(+) neurospheres containing proliferative precursor cells. On differentiation, these generate glial cells and gamma-aminobutyric acid (GABA)-ergic neurons. These results provide the first evidence for the existence in the adult human spinal cord of neural precursors with the potential to differentiate into neurons and glia. They represent a major interest for endogenous regeneration of spinal cord after trauma and in degenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.