Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9–10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported.
It has been suggested that a simple non-symbolic magnitude comparison task is sufficient to measure the acuity of a putative Approximate Number System (ANS). A proposed measure of the ANS, the so-called “internal Weber fraction” (w), would provide a clear measure of ANS acuity. However, ANS studies have never presented adequate evidence that visual stimulus parameters did not compromise measurements of w to such extent that w is actually driven by visual instead of numerical processes. We therefore investigated this question by testing non-symbolic magnitude discrimination in seven-year-old children and adults. We manipulated/controlled visual parameters in a more stringent manner than usual. As a consequence of these controls, in some trials numerical cues correlated positively with number while in others they correlated negatively with number. This congruency effect strongly correlated with w, which means that congruency effects were probably driving effects in w. Consequently, in both adults and children congruency had a major impact on the fit of the model underlying the computation of w. Furthermore, children showed larger congruency effects than adults. This suggests that ANS tasks are seriously compromised by the visual stimulus parameters, which cannot be controlled. Hence, they are not pure measures of the ANS and some putative w or ratio effect differences between children and adults in previous ANS studies may be due to the differential influence of the visual stimulus parameters in children and adults. In addition, because the resolution of congruency effects relies on inhibitory (interference suppression) function, some previous ANS findings were probably influenced by the developmental state of inhibitory processes especially when comparing children with developmental dyscalculia and typically developing children.
We determined how various cognitive abilities, including several measures of a proposed domain-specific number sense, relate to mathematical competence in nearly 100 9-year-old children with normal reading skill. Results are consistent with an extended number processing network and suggest that important processing nodes of this network are phonological processing, verbal knowledge, visuo-spatial short-term and working memory, spatial ability and general executive functioning. The model was highly specific to predicting arithmetic performance. There were no strong relations between mathematical achievement and verbal short-term and working memory, sustained attention, response inhibition, finger knowledge and symbolic number comparison performance. Non-verbal intelligence measures were also non-significant predictors when added to our model. Number sense variables were non-significant predictors in the model and they were also non-significant predictors when entered into regression analysis with only a single visuo-spatial WM measure. Number sense variables were predicted by sustained attention. Results support a network theory of mathematical competence in primary school children and falsify the importance of a proposed modular ‘number sense’. We suggest an ‘executive memory function centric’ model of mathematical processing. Mapping a complex processing network requires that studies consider the complex predictor space of mathematics rather than just focusing on a single or a few explanatory factors.
Fractions are well known to be difficult to learn. Various hypotheses have been proposed in order to explain those difficulties: fractions can denote different concepts; their understanding requires a conceptual reorganization with regard to natural numbers; and using fractions involves the articulation of conceptual knowledge with complex manipulation of procedures. In order to encompass the major aspects of knowledge about fractions, we propose to distinguish between conceptual and procedural knowledge. We designed a test aimed at assessing the main components of fraction knowledge. The test was carried out by fourth-, fifth- and sixth-graders from the French Community of Belgium. The results showed large differences between categories. Pupils seemed to master the part-whole concept, whereas numbers and operations posed problems. Moreover, pupils seemed to apply procedures they do not fully understand. Our results offer further directions to explain why fractions are amongst the most difficult mathematical topics in primary education. This study offers a number of recommendations on how to teach fractions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.