The recognition that individual GPCRs can activate multiple signaling pathways has raised the possibility of developing drugs selectively targeting therapeutically relevant ones. This requires tools to determine which G proteins and barrestins are activated by a given receptor. Here, we present a set of BRET sensors monitoring the activation of the 12 G protein subtypes based on the translocation of their effectors to the plasma membrane (EMTA). Unlike most of the existing detection systems, EMTA does not require modification of receptors or G proteins (except for Gs). EMTA was found to be suitable for the detection of constitutive activity, inverse agonism, biased signaling and polypharmacology. Profiling of 100 therapeutically relevant human GPCRs resulted in 1,500 pathway-specific concentration-response curves and revealed a great diversity of coupling profiles ranging from exquisite selectivity to broad promiscuity. Overall, this work describes unique resources for studying the complexities underlying GPCR signaling and pharmacology.
The ability of individual G protein-coupled receptors (GPCR) to engage multiple signaling pathways opens opportunities for the development of better drugs. This requires new knowledge and tools to determine the G protein subtypes and arrestins engaged by a given receptor. Here, we used a new BRET-based effector membrane translocation assay (EMTA) that monitors activation of each Gα protein through the recruitment of selective G protein effectors and βarrestins to the plasma membrane. Profiling of 100 therapeutically relevant GPCR revealed a great diversity of coupling profiles with some receptors displaying exquisite selectivity, whereas others promiscuitely engage all four G protein families. Comparison with existing datasets points to commonalities but also to critical differences between studies.Combining a biosensor subset allowed detecting activity of nearly all GPCR thus providing a new tool for safety screens and systems pharmacology. Overall, this work describes unique resources for studying GPCR function and drug discovery. KEYWORDSG protein-coupled receptor (GPCR), enhanced bystander bioluminescence resonance energy transfer (ebBRET), Biosensor, Effector membrane translocation assay (EMTA), Highthroughput assay, G protein activation, Functional selectivity, Systems pharmacology.
G protein-coupled receptors are key signaling molecules and major targets for pharmaceuticals. The concept of ligand-dependent biased signaling raises the possibility of developing drugs with improved efficacy and safety profiles, yet translating this concept to native tissues remains a major challenge. Whether drug activity profiling in recombinant cell-based assays, traditionally used for drug discovery, has any relevance to physiology is unknown. Here we focused on the mu opioid receptor, the unrivalled target for pain treatment and also the key driver for the current opioid crisis. We selected a set of clinical and novel mu agonists, and profiled their activities in transfected cell assays using advanced biosensors and in native neurons from knock-in mice expressing traceable receptors endogenously. Our data identify Gi-biased agonists, including buprenorphine, and further show highly correlated drug activities in the two otherwise very distinct experimental systems, supporting in vivo translatability of biased signaling for mu opioid drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.