The GPCRDB is a G protein-coupled receptor (GPCR) database system aimed at the collection and dissemination of GPCR related data. It holds sequences, mutant data and ligand binding constants as primary (experimental) data. Computationally derived data such as multiple sequence alignments, three dimensional models, phylogenetic trees and two dimensional visualization tools are added to enhance the database's usefulness. The GPCRDB is an EU sponsored project aimed at building a generic molecular class specific database capable of dealing with highly heterogeneous data. GPCRs were chosen as test molecules because of their enormous importance for medical sciences and due to the availability of so much highly heterogeneous data. The GPCRDB is available via the WWW at http://www.gpcr.org/7tm
Recent developments in G protein-coupled receptor (GPCR) structural biology and pharmacology have greatly enhanced our knowledge of receptor structure-function relations, and have helped improve the scientific foundation for drug design studies. The GPCR database, GPCRdb, serves a dual role in disseminating and enabling new scientific developments by providing reference data, analysis tools and interactive diagrams. This paper highlights new features in the fifth major GPCRdb release: (i) GPCR crystal structure browsing, superposition and display of ligand interactions; (ii) direct deposition by users of point mutations and their effects on ligand binding; (iii) refined snake and helix box residue diagram looks; and (iii) phylogenetic trees with receptor classification colour schemes. Under the hood, the entire GPCRdb front- and back-ends have been re-coded within one infrastructure, ensuring a smooth browsing experience and development. GPCRdb is available at http://www.gpcrdb.org/ and it's open source code at https://bitbucket.org/gpcr/protwis.
The GPCRDB is a molecular class-specific information system that collects, combines, validates and disseminates heterogeneous data on G protein-coupled receptors (GPCRs). The database stores data on sequences, ligand binding constants and mutations. The system also provides computationally derived data such as sequence alignments, homology models, and a series of query and visualization tools. The GPCRDB is updated automatically once every 4-5 months and is freely accessible at http://www.gpcr.org/7tm/.
The amount of genomic and proteomic data that is entered each day into databases and the experimental literature is outstripping the ability of experimental scientists to keep pace. While generic databases derived from automated curation efforts are useful, most biological scientists tend to focus on a class or family of molecules and their biological impact. Consequently, there is a need for molecular class-specific or other specialized databases. Such databases collect and organize data around a single topic or class of molecules. If curated well, such systems are extremely useful as they allow experimental scientists to obtain a large portion of the available data most relevant to their needs from a single source. We are involved in the development of two such databases with substantial pharmacological relevance. These are the GPCRDB and NucleaRDB information systems, which collect and disseminate data related to G protein-coupled receptors and intra-nuclear hormone receptors, respectively. The GPCRDB was a pilot project aimed at building a generic molecular class-specific database capable of dealing with highly heterogeneous data. A first version of the GPCRDB project has been completed and it is routinely used by thousands of scientists. The NucleaRDB was started recently as an application of the concept for the generalization of this technology. The GPCRDB is available via the WWW at http://www.gpcr.org/7tm/ and the NucleaRDB at http://www.receptors.org/NR/.
We present a computational method that identifies and extracts mutation data from the scientific literature. We focused on the extraction of single point mutations for the GPCR and NR superfamilies. After validation by plausibility filters, the mutation data is integrated into the corresponding MCSIS where it is combined with structural and sequence information already stored in these databases. We extracted and validated 2736 true point mutations from 914 articles on GPCRs and 785 true point mutations from 1094 articles on NRs. The current version of our automated extraction algorithm identifies 49.3% of the GPCR point mutations with a specificity of 87.9%, and 64.5% of the NR point mutations with a specificity of 85.8%. MuteXt routinely analyzes 100 electronic articles in approximately 1 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.