The spatio-temporal regulation of symmetrical as opposed to asymmetric cell divisions directs the fate and location of cells in the developing CNS. In invertebrates, G-protein regulators control spindle orientation in asymmetric divisions, which generate progeny with different identities. We investigated the role of the G-protein regulator LGN (also called Gpsm2) in spindle orientation and cell-fate determination in the spinal cord neuroepithelium of the developing chick embryo. We show that LGN is located at the cell cortex and spindle poles of neural progenitors, and that it regulates spindle movements and orientation. LGN promotes planar divisions in the early spinal cord. Interfering with LGN function randomizes the plane of division. Notably, this does not affect cell fate, but frequently leads one daughter of proliferative symmetric divisions to exit the neuroepithelium prematurely and to proliferate aberrantly in the mantle zone. Hence, tight control of planar spindle orientation maintains neural progenitors in the neuroepithelium, and regulates the proper development of the nervous system.
Knockdown or mislocalization of LGN complex components disrupts the stereotypic biphasic spindle movements regulating planar cell division and neuroepithelial structure in chick embryos.
Despite evidence showing that anticholinergic drugs are of clinical relevance in Parkinson's disease (PD), the causal role of striatal cholinergic interneurons (CINs) in PD pathophysiology remains elusive. Here, we show that optogenetic inhibition of CINs alleviates motor deficits in PD mouse models, providing direct demonstration for their implication in parkinsonian motor dysfunctions. As neural correlates, CIN inhibition in parkinsonian mice differentially impacts the excitability of striatal D1 and D2 medium spiny neurons, normalizes pathological bursting activity in the main basal ganglia output structure, and increases the functional weight of the direct striatonigral pathway in cortical information processing. By contrast, CIN inhibition in non-lesioned mice does not affect locomotor activity, equally modulates medium spiny neuron excitability, and does not modify spontaneous or cortically driven activity in the basal ganglia output, suggesting that the role of these interneurons in motor function is highly dependent on dopamine tone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.