Chanarin-Dorfman syndrome (CDS) is a rare autosomal recessive form of nonbullous congenital ichthyosiform erythroderma (NCIE) that is characterized by the presence of intracellular lipid droplets in most tissues. We previously localized a gene for a subset of NCIE to chromosome 3 (designated "the NCIE2 locus"), in six families. Lipid droplets were found in five of these six families, suggesting a diagnosis of CDS. Four additional families selected on the basis of a confirmed diagnosis of CDS also showed linkage to the NCIE2 locus. Linkage-disequilibrium analysis of these families, all from the Mediterranean basin, allowed us to refine the NCIE2 locus to an approximately 1.3-Mb region. Candidate genes from the interval were screened, and eight distinct mutations in the recently identified CGI-58 gene were found in 13 patients from these nine families. The spectrum of gene variants included insertion, deletion, splice-site, and point mutations. The CGI-58 protein belongs to a large family of proteins characterized by an alpha/beta hydrolase fold. CGI-58 contains three sequence motifs that correspond to a catalytic triad found in the esterase/lipase/thioesterase subfamily. Interestingly, CGI-58 differs from other members of the esterase/lipase/thioesterase subfamily in that its putative catalytic triad contains an asparagine in place of the usual serine residue.
Lamellar ichthyosis type 2 (LI2) is a rare autosomal recessive skin disorder for which a gene has been localized on chromosome 2q33-35. We report the identification of five missense mutations in the ABCA12 gene in nine families from Africa affected by LI2. The mutations were homozygous in eight consanguineous families and heterozygous in one non-consanguineous family. Four of these mutations are localized in the first ATP-binding domain (nucleotide-binding fold), which is highly conserved in all ABC proteins. The ABCA12 protein belongs to a superfamily of membrane proteins that translocate a variety of substrates across extra- and intracellular membranes. ABCA transporters have been implicated in several autosomal recessive disorders, notably of lipid metabolism. By analogy with ABCA3, a lamellar body membrane protein in lung alveolar type II cells, ABCA12 could function in cellular lipid trafficking in keratinocytes.
We report the identification of mutations in lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) genes in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17. Linkage disequilibrium analysis of six families affected by NCIE permitted us to reduce a recently reported interval of 8.4 cM on chromosome 17p13.1 to a 600 kb region around the marker D17S1796, which contains LOX genes. LOX products have long been implicated in skin disorders. Two point mutations and one deletion were found in ALOXE3 and three point mutations were found in ALOX12B in these consanguineous families from the Mediterranean basin. ALOXE3 and ALOX12B are two genes which are physically linked and functionally related. They are separated by 38 kb, have one more exon than the other LOX genes and are mainly expressed in epithelial cells including keratinocytes. Although the main substrate(s) of the two enzymes is (are) still unknown, the products of ALOX12B obtained in experimental systems have been demonstrated to be of R-chirality. It seems likely that the product of one of these enzymes may be the substrate of the other, and that they belong to the same metabolic pathway.
Kindler syndrome is a rare autosomal-recessive genodermatosis characterized by bullous poikiloderma with photosensitivity. We report the localization to chromosome 20p12.3 by homozygosity mapping and the identification of a new gene, which we propose to name kindlerin. We found four different homozygous mutations in four consanguineous families from North Africa and Senegal; three are expected to lead to premature stop codons and truncated proteins and the fourth involves a splice site. We were unable to identify a mutation in kindlerin in a fifth consanguineous family from Algeria with a similar phenotype and in which the patient was homozygous for the markers in the 20p12.3 interval. The kindlerin protein contains several domains which are shared by a diverse group of peripheral membrane proteins that function as membrane-cytoskeleton linkers: two regions homologous to band 4.1 domain of which one includes a FERM domain with a NPKY sequence motif, and a third region with a PH or pleckstrin homology domain. Kindlerin might be involved in the bidirectional signaling between integrin molecules in the membrane and the cytoskeleton, and could be involved in cell adhesion processes via integrin signaling.
Mal de Meleda (MDM) is a rare autosomal recessive skin disorder, characterized by transgressive palmoplantar keratoderma (PPK), keratotic skin lesions, perioral erythema, brachydactyly and nail abnormalities. We report the refinement of our previously described interval of MDM on chromosome 8qter, and the identification of mutations in affected individuals in the ARS (component B) gene, encoding a protein named SLURP-1, for secreted Ly-6/uPAR related protein 1. This protein is a member of the Ly-6/uPAR superfamily, in which most members have been localized in a cluster on chromosome 8q24.3. The amino acid composition of SLURP-1 is homologous to that of toxins such as frog cytotoxin and snake venom neurotoxins and cardiotoxins. Three different homozygous mutations (a deletion, a nonsense and a splice site mutation) were detected in 19 families of Algerian and Croatian origin, suggesting founder effects. Moreover, one of the common haplotypes presenting the same mutation was shared by families from both populations. Secreted and receptor proteins of the Ly-6/uPAR superfamily have been implicated in transmembrane signal transduction, cell activation and cell adhesion. This is the first instance of a secreted protein being involved in a PPK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.