Tissue-specific DNA methylation is found at promoters, enhancers, and CpG islands but also over larger genomic regions. In most human tissues, the vast majority of the genome is highly methylated (>70%). Recently, sequencing of bisulfite-treated DNA (MethylCseq) has revealed large partially methylated domains (PMDs) in some human cell lines. PMDs cover up to 40% of the genome and are associated with gene repression and inactive chromatin marks. However, to date, only cultured cells and cancers have shown evidence for PMDs. Here, we performed MethylC-seq in full-term human placenta and demonstrate it is the first known normal tissue showing clear evidence of PMDs. We found that PMDs cover 37% of the placental genome, are stable throughout gestation and between individuals, and can be observed with lower sensitivity in Illumina 450K Infinium data. RNA-seq analysis confirmed that genes in PMDs are repressed in placenta. Using a hidden Markov model to map placental PMDs genome-wide and compare them to PMDs in other cell lines, we found that genes within placental PMDs have tissuespecific functions. For regulatory regions, methylation levels in promoter CpG islands are actually higher for genes within placental PMDs, despite the lower overall methylation of surrounding regions. Similar to PMDs, polycomb-regulated regions are hypomethylated but smaller and distinct from PMDs, with some being hypermethylated in placenta compared with other tissues. These results suggest that PMDs are a developmentally dynamic feature of the methylome that are relevant for understanding both normal development and cancer and may be of use as epigenetic biomarkers.epigenomics | hypomethylation
Prader–Willi syndrome (PWS), a genetic disorder of obesity, intellectual disability and sleep abnormalities, is caused by loss of non-coding RNAs on paternal chromosome 15q11-q13. The imprinted minimal PWS locus encompasses a long non-coding RNA (lncRNA) transcript processed into multiple SNORD116 small nucleolar RNAs and the spliced exons of the host gene, 116HG. However, both the molecular function and the disease relevance of the spliced lncRNA 116HG are unknown. Here, we show that 116HG forms a subnuclear RNA cloud that co-purifies with the transcriptional activator RBBP5 and active metabolic genes, remains tethered to the site of its transcription and increases in size in post-natal neurons and during sleep. Snord116del mice lacking 116HG exhibited increased energy expenditure corresponding to the dysregulation of diurnally expressed Mtor and circadian genes Clock, Cry1 and Per2. These combined genomic and metabolic analyses demonstrate that 116HG regulates the diurnal energy expenditure of the brain. These novel molecular insights into the energy imbalance in PWS should lead to improved therapies and understanding of lncRNA roles in complex neurodevelopmental and metabolic disorders.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are oppositely imprinted autism-spectrum disorders with known genetic bases, but complex epigenetic mechanisms underlie their pathogenesis. The PWS/AS locus on 15q11-q13 is regulated by an imprinting control region that is maternally methylated and silenced. The PWS imprinting control region is the promoter for a one megabase paternal transcript encoding the ubiquitous protein-coding Snrpn gene and multiple neuron-specific noncoding RNAs, including the PWS-related Snord116 repetitive locus of small nucleolar RNAs and host genes, and the antisense transcript to AScausing ubiquitin ligase encoding Ube3a (Ube3a-ATS). Neuronspecific transcriptional progression through Ube3a-ATS correlates with paternal Ube3a silencing and chromatin decondensation. Interestingly, topoisomerase inhibitors, including topotecan, were recently identified in an unbiased drug screen for compounds that could reverse the silent paternal allele of Ube3a in neurons, but the mechanism of topotecan action on the PWS/AS locus is unknown. Here, we demonstrate that topotecan treatment stabilizes the formation of RNA:DNA hybrids (R loops) at G-skewed repeat elements within paternal Snord116, corresponding to increased chromatin decondensation and inhibition of Ube3a-ATS expression. Neural precursor cells from paternal Snord116 deletion mice exhibit increased Ube3a-ATS levels in differentiated neurons and show a reduced effect of topotecan compared with wild-type neurons. These results demonstrate that the AS candidate drug topotecan acts predominantly through stabilizing R loops and chromatin decondensation at the paternally expressed PWS Snord116 locus. Our study holds promise for targeted therapies to the Snord116 locus for both AS and PWS.rader-Willi syndrome (PWS) and Angelman syndrome (AS) are imprinted neurodevelopmental disorders caused by oppositely inherited deficiencies of chromosome 15q11-q13. AS and PWS are both characterized by hypotonia at birth, disordered sleep, autistic features, and intellectual disabilities, but the diseases differentiate into phenotypically distinct syndromes in early childhood (1, 2). Seizures, ataxia, and inappropriate laughter characterize AS, whereas hyperphagia leading to obesity and obsessive-compulsive behaviors characterize PWS. Maternal mutations in UBE3A/Ube3a in humans and mice have identified the loss of function of this ubiquitin E3 ligase encoding gene as the cause of AS (3, 4). For PWS, small deletions of the HBII-85/ SNORD116 locus (5-7) and two mouse models of Snord116 deletions (8, 9) have identified the minimal causative deficiency to be the paternally expressed, highly repetitive, long noncoding RNA (lncRNA) that is processed into multiple small nucleolar RNAs (snoRNAs) and spliced nuclear retained host genes (116HG and 115HG) (10,11).A recent drug screen discovered that topoisomerase inhibitors, including topotecan, reduce Ube3a-ATS by an unknown mechanism to reverse the silencing of paternal Ube3a in mouse neurons and brain (12). Topotec...
Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT OMIM 312750). Alternative inclusion of MECP2/Mecp2 exon 1 with exons 3 and 4 encodes MeCP2-e1 or MeCP2-e2 protein isoforms with unique amino termini. While most MECP2 mutations are located in exons 3 and 4 thus affecting both isoforms, MECP2 exon 1 mutations but not exon 2 mutations have been identified in RTT patients, suggesting that MeCP2-e1 deficiency is sufficient to cause RTT. As expected, genetic deletion of Mecp2 exons 3 and/or 4 recapitulates RTT-like neurologic defects in mice. However, Mecp2 exon 2 knockout mice have normal neurologic function. Here, a naturally occurring MECP2 exon 1 mutation is recapitulated in a mouse model by genetic engineering. A point mutation in the translational start codon of Mecp2 exon 1, transmitted through the germline, ablates MeCP2-e1 translation while preserving MeCP2-e2 production in mouse brain. The resulting MeCP2-e1 deficient mice developed forelimb stereotypy, hindlimb clasping, excessive grooming and hypo-activity prior to death between 7 and 31 weeks. MeCP2-e1 deficient mice also exhibited abnormal anxiety, sociability and ambulation. Despite MeCP2-e1 and MeCP2-e2 sharing, 96% amino acid identity, differences were identified. A fraction of phosphorylated MeCP2-e1 differed from the bulk of MeCP2 in subnuclear localization and co-factor interaction. Furthermore, MeCP2-e1 exhibited enhanced stability compared with MeCP2-e2 in neurons. Therefore, MeCP2-e1 deficient mice implicate MeCP2-e1 as the sole contributor to RTT with non-redundant functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.