SummaryOaks (Quercus spp.), which are major forest trees in the northern hemisphere, host many biotic interactions, but molecular investigation of these interactions is limited by fragmentary genome data. To date, only 75 oak expressed sequence tags (ESTs) have been characterized in ectomycorrhizal (EM) symbioses.We synthesized seven beneficial and detrimental biotic interactions between microorganisms and animals and a clone (DF159) of Quercus robur. Sixteen 454 and eight Illumina cDNA libraries from leaves and roots were prepared and merged to establish a reference for RNASeq transcriptomic analysis of oak EMs with Piloderma croceum.Using the Mimicking Intelligent Read Assembly (MIRA) and Trinity assembler, the OakContigDF159.1 hybrid assembly, containing 65 712 contigs with a mean length of 1003 bp, was constructed, giving broad coverage of metabolic pathways. This allowed us to identify 3018 oak contigs that were differentially expressed in EMs, with genes encoding proline-rich cell wall proteins and ethylene signalling-related transcription factors showing up-regulation while auxin and defence-related genes were down-regulated.In addition to the first report of remorin expression in EMs, the extensive coverage provided by the study permitted detection of differential regulation within large gene families (nitrogen, phosphorus and sugar transporters, aquaporins). This might indicate specific mechanisms of genome regulation in oak EMs compared with other trees.
Rhizobacteria are known to induce defense responses in plants without causing disease symptoms, resulting in increased resistance to plant pathogens. This study investigated how Streptomyces sp. strain AcH 505 suppressed oak powdery mildew infection in pedunculate oak, by analyzing RNA-Seq data from singly- and co-inoculated oaks. We found that this Streptomyces strain elicited a systemic defense response in oak that was, in part, enhanced upon pathogen challenge. In addition to induction of the jasmonic acid/ethylene-dependent pathway, the RNA-Seq data suggests the participation of the salicylic acid-dependent pathway. Transcripts related to tryptophan, phenylalanine, and phenylpropanoid biosynthesis were enriched and phenylalanine ammonia lyase activity increased, indicating that priming by Streptomyces spp. in pedunculate oak shares some determinants with the Pseudomonas-Arabidopsis system. Photosynthesis-related transcripts were depleted in response to powdery mildew infection, but AcH 505 alleviated this inhibition, which suggested there is a fitness benefit for primed plants upon pathogen challenge. This study offers novel insights into the mechanisms of priming by actinobacteria and highlights their capacity to activate plant defense responses in the absence of pathogen challenge.
BackgroundHost plant roots, mycorrhizal mycelium and microbes are important and potentially interacting factors shaping the performance of mycorrhization helper bacteria (MHB). We investigated the impact of a soil microbial community on the interaction between the extraradical mycelium of the ectomycorrhizal fungus Piloderma croceum and the MHB Streptomyces sp. AcH 505 in both the presence and the absence of pedunculate oak microcuttings.ResultsSpecific primers were designed to target the internal transcribed spacer of the rDNA and an intergenic region between two protein encoding genes of P. croceum and the intergenic region between the gyrA and gyrB genes of AcH 505. These primers were used to perform real-time PCR with DNA extracted from soil samples. With a sensitivity of 10 genome copies and a linear range of 6 orders of magnitude, these real-time PCR assays enabled the quantification of purified DNA from P. croceum and AcH 505, respectively. In soil microcosms, the fungal PCR signal was not affected by AcH 505 in the absence of the host plant. However, the fungal signal became weaker in the presence of the plant. This decrease was only observed in microbial filtrate amended microcosms. In contrast, the PCR signal of AcH 505 increased in the presence of P. croceum. The increase was not significant in sterile microcosms that contained plant roots.ConclusionsReal-time quantitative PCR assays provide a method for directly detecting and quantifying MHB and mycorrhizal fungi in plant microcosms. Our study indicates that the presence of microorganisms and plant roots can both affect the nature of MHB-fungus interactions, and that mycorrhizal fungi may enhance MHB growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.