Dendritic cells (DCs) are essential components of the early events of HIV infection. Here, we characterized the trafficking pathways that HIV-1 follows during its capture by DCs and its subsequent presentation to CD4 + T cells via an infectious synapse. Immunofluorescence microscopy indicates that the virus-containing compartment in mature DCs (mDCs) co-labels for the tetraspanins CD81, CD82, and CD9 but contains little CD63 or LAMP-1. Using ratio imaging of pH-reporting fluorescent virions in live DCs, we show that HIV-1 is internalized in an intracellular endocytic compartment with a pH of 6.2. Significantly, we demonstrate that the infectivity of cell-free virus is more stable at mildly acidic pH than at neutral pH. Using electron microscopy, we confirm that HIV-1 accumulates in intracellular vacuoles that contain CD81 positive internal membranes but overlaps only partially with CD63. When allowed to contact T cells, HIV-1-loaded DCs redistribute CD81, and CD9, as well as internalized HIV-1, but not the immunological synapse markers MHC-II and T-cell receptor to the infectious synapse. Together, our results indicate that HIV-1 is internalized into a non-conventional, non-lysosomal, endocytic compartment in mDCs and further suggest that HIV-1 is able to selectively subvert components of the intracellular trafficking machinery required for formation of the DC-T-cell immunological synapse to facilitate its own cell-to-cell transfer and propagation.
SUMMARY
Dendritic cells (DCs) in mucosal surfaces are early targets for human immunodeficiency virus-1 (HIV-1). DCs mount rapid and robust immune responses upon pathogen encounter. However, immune response in the early events of HIV-1 transmission appears limited, suggesting that HIV-1 evade early immune control by DCs. We report that HIV-1 induces a rapid shutdown of autophagy and immunoamphisomes in DCs. HIV-1 envelope activated the mammalian target of rapamycin pathway in DCs, leading to autophagy exhaustion. HIV-1-induced inhibition of autophagy in DC increased cell-associated HIV-1 and transfer of HIV-1 infection to CD4+ T cells. HIV-1-mediated downregulation of autophagy in DCs impaired innate and adaptive immune responses. Immunoamphisomes in DCs engulf incoming pathogens and appear to amplify pathogen degradation as well as Toll-like receptor responses and antigen presentation. The findings that HIV-1 downregulates autophagy and impedes immune functions of DCs represent a pathogenesis mechanism that can be pharmacologically countered with therapeutic and prophylactic implications.
Phagocytic cells capture and kill most invader microbes within the bactericidal phagosome, but some pathogens subvert killing by damaging the compartment and escaping to the cytosol. To prevent the leakage of pathogen virulence and host defence factors, as well as bacteria escape, host cells have to contain and repair the membrane damage, or finally eliminate the cytosolic bacteria. All eukaryotic cells engage various repair mechanisms to ensure plasma membrane integrity and proper compartmentalization of organelles, including the Endosomal Sorting Complex Required for Transport (ESCRT) and autophagy machineries. We show that during infection of Dictyostelium discoideum with Mycobacterium marinum, the ESCRT-I component Tsg101, the ESCRT-III protein Snf7/Chmp4/Vps32 and the AAA-ATPase Vps4 are recruited to sites of damage at the Mycobacterium-containing vacuole. Interestingly, damage separately recruits the ESCRT and the autophagy machineries. In addition, the recruitment of Vps32 and Vps4 to repair sterile membrane damage depends on Tsg101 but appears independent of Ca2+. Finally, in absence of Tsg101, M. marinum accesses prematurely the cytosol, where the autophagy machinery restricts its growth. We propose that ESCRT has an evolutionary conserved function to repair small membrane damage and to contain intracellular pathogens in intact compartments.
Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) is an important regulator of vesicle trafficking. The authors show that, in Dictyostelium, WASH is required for lysosomal hydrolase recycling and function. WASH is therefore crucial for both autophagic and phagocytic degradation, and cells lacking WASH are unable to either survive starvation or grow on certain bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.