Mycotoxins are secondary metabolites present worldwide in agricultural commodities and produced by filamentous fungi that cause a toxic response (mycotoxicosis) when ingested by animals. Prevention of mycotoxicoses includes pre- and post-harvest strategies. The best way to reduce the mycotoxin content in food and feed is the prevention of mycotoxin formation in the field, but this is often not sufficient, so other methods are needed. To decontaminate and/or detoxify mycotoxin-contaminated food and feed, the most prevalent approach in the feed industry is the inclusion of sorbent materials in the feed thus obtaining more or less selective removal of toxins by adsorption during passage through the gastrointestinal tract. Another reliable approach is to add enzymes or microorganisms capable of detoxifying some mycotoxins. Through a comprehensive review of published reports on the strategies for mycotoxin removal, this present work aims to update our understanding of mycotoxin removal. It provides an insight into the detoxification of mycotoxin present in food and feed. In the future, more emphasis needs to be placed on adsorption of mycotoxins in the gastrointestinal tract. Concerning the enzymatic transformation of mycotoxins, further efforts are required in understanding detoxification reactions, the toxicity of transformation products and in the characterization of enzymes responsible for transformations.
Aims: To assess, for the first time the efficiency in removing ochratoxin A (OTA) from laboratory medium [yeast peptone glucose (YPG)], synthetic grape juice medium (SGM) and natural grape juice by viable and dead (heat and acid-treated) oenological Saccharomyces strains (five S. cerevisiae and one S. bayanus) compared with a commercial yeast walls additive. Methods and Results: Levels of OTA during its interaction with six oenological Saccharomyces strains (five S. cerevisiae and one S. bayanus) or with a commercial yeast walls additive in YPG medium, in SGM or in natural grape juices was assessed by HPLC after appropriate extraction methods. A significant decrease of OTA levels in YPG medium and SGM was observed for many of the growing strains reaching a maximum of 45%, but no degradation products were detected. With both heat and acid pretreated yeasts, OTA removal was enhanced, indicating that adsorption, not catabolism, is the mechanism to reduce OTA concentrations. Adsorption was also improved when the yeast concentration was increased and when the pH of the medium was lower. Approximately 90% of OTA was bound rapidly within 5 min and up to 72 h of incubation with heat-treated cells of either S. cerevisiae or S. bayanus. A comparative study between heat-treated cells (HC) and commercial yeast walls (YW) (used as oenological additive), introduced at two different concentrations (0AE2 and 6AE7 g l )1 ) in an OTA-contaminated grape juice, showed the highest efficiency by HC to adsorb rapidly within 5 min the total amount of the mycotoxin. Conclusions: Oenological S. cerevisiae and S. bayanus were able to remove ochatoxin A from synthetic and natural grape juices. This removal was rapid and improved by dead yeasts having more efficiency than commercial yeast walls.Significance and Impact of the Study: The efficiency of heat-treated yeasts to remove OTA gives a new hope for grape juice and must decontamination avoiding negative impacts on human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.