Dermatofibrosarcoma protuberans (DP), an infiltrative skin tumour of intermediate malignancy, presents specific features such as reciprocal translocations t(17;22)(q22;q13) and supernumerary ring chromosomes derived from the t(17;22). In this report, the breakpoints from translocations and rings in DP and its juvenile form, giant cell fibroblastoma (GCF), were characterised on the genomic and RNA level. These rearrangements fuse the platelet-derived growth factor B-chain (PDGFB, c-sis proto-oncogene) and the collagen type I alpha 1 (COL1A1) genes. PDGFB has transforming activity and is a potent mitogen for a number of cell types, but its role in oncogenic processes is not fully understood. COL1A1 is a major constituent of the connective tissue matrix. Neither PDGFB nor COL1A1 have so far been implicated in any tumour translocations. These gene fusions delete exon 1 of PDGFB, and release this growth factor from its normal regulation.
Low-grade fibromyxoid sarcomas (LGFMS) bear either the t(7,16) (q32-34;p11) or t(11,16) (p11;p11) translocations, resulting in FUS-CREB3L2 or FUS-CREB3L1 fusions, respectively. Heretofore, fusion transcripts were mainly detected in frozen tissues, using reverse transcription-polymerase chain reaction. In this study, we aimed to develop a reliable method to detect these in paraffin-embedded tissues, and to examine the clinicopathologic characteristics of a series of translocation-positive LGFMS. Sixty-three neoplasms with typical morphologic features of LGFMS and 66 non-LGFMS tumors selected for their resemblance to LGFMS (LGFMS-like tumors) were examined. RNA of sufficient quality could be extracted from 111/129 (86%) cases (59 LGFMS, 52 non-LGFMS). Of all, 48/59 (sensitivity, 81%) LGFMS contained detectable transcripts (45 FUS-CREB3L2, 3 FUS-CREB3L1). Most relevant clinicopathologic features of fusion-positive LGFMS included predominance in lower extremities (22/48; thigh: 13/48), deep situation (46/48), and occasional presence of unusual histologic features, for example, hypercellular areas (16/48), foci of epithelioid cells (13/48), and giant rosettes (6/48). Most tumors expressed EMA (41/45), at least focally, CD99 (38/41) and bcl-2 (36/41) while being essentially negative for CD34 (2/45), mdm2 (1/41), smooth muscle actin (1/45), S100 protein (0/46), desmin (0/44), h-caldesmon (0/42), keratins (0/44), and CD117 (0/40). Eleven presumed LGFMS were fusion negative. Of all, 7/52 non-LGMFS neoplasms contained FUS-CREB3L2 transcripts, of which 4 had been diagnosed as sclerosing epithelioid fibrosarcoma. In conclusion, FUS-CREB3L1/L2 fusion transcripts can be detected in paraffin-embedded LGFMS in a sensitive manner, using reverse transcription-polymerase chain reaction. Most fusion-positive LGFMS are EMA-positive and CD34/S100/smooth muscle actin negative. The presence of epithelioid cells and fusion transcripts in both LGFMS and a subset of sclerosing epithelioid fibrosarcoma suggest that these neoplasms might be related.
Dermatofibrosarcoma protuberans (DP) is a rare, slow-growing, infiltrating dermal neoplasm of intermediate malignancy, made up of spindle-shaped tumor cells often positive for CD34. The preferred treatment is wide surgical excision with pathologically negative margins. At the cytogenetic level, DP cells are characterized by either supernumerary ring chromosomes, which have been shown by using fluorescence in situ hybridization techniques to be derived from chromosome 22 and to contain low-level amplified sequences from 17q22-qter and 22q10-q13.1, or t(17;22), that are most often unbalanced. Both the rings and linear der(22) contain a specific fusion of COL1A1 with PDGFB. Similar to other tumors, the COL1A1-PDGFB fusion is occasionally cryptic, associated with complex chromosomal rearrangements. Although rings have been mainly observed in adults, translocations have been reported in all pediatric cases. DP is therefore a unique example of a tumor in which (i) the same molecular event occurs either on rings or linear translocation derivatives, (ii) the chromosomal abnormalities display an age-related pattern, and (iii) the presence of the specific fusion gene is associated with the gain of chromosomal segments, probably taking advantage of gene dosage effects. In all DP cases that underwent molecular investigations, the breakpoint localization in PDGFB was found to be remarkably constant, placing exon 2 under the control of the COL1A1 promoter. In contrast, the COL1A1 breakpoint was found to be variably located within the exons of the alpha-helical coding region (exons 6-49). No preferential COL1A1 breakpoint and no correlation between the breakpoint location and the age of the patient or any clinical or histological particularity have been described. The COL1A1-PDGFB fusion is detectable by multiplex RT-PCR with a combination of forward primers designed from a variety of COL1A1 exons and one reverse primer from PDGFB exon 2. Recent studies have determined the molecular identity of "classical" DP, giant cell fibroblastoma, Bednar tumor, adult superficial fibrosarcoma, and the granular cell variant of DP. In approximately 8% of DP cases, the COL1A1-PDGFB fusion is not found, suggesting that genes other than COL1A1 or PDGFB might be involved in a subset of cases. It has been proposed that PDGFB acts as a mitogen in DP cells by autocrine stimulation of the PDGF receptor. It is encouraging that inhibitory effects of the PDGF receptor tyrosine kinase antagonist imatinib mesylate have been demonstrated in vivo; such targeted therapies might be warranted in the near future for treatment of the few DP cases not manageable by surgery.
Atypical lipomatous tumor or well-differentiated liposarcoma (ALT-WDLPS) and dedifferentiated liposarcoma (DDLPS) share the same basic genetic abnormality characterized by a simple genomic profile with a 12q14-15 amplification involving MDM2 gene. These tumors are the most frequent LPS. This paper reviews the molecular pathology, general clinical and imaging features, histopathology, new diagnostic tools, and prognosis of ALT-WDLPS and DDLPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.