During the past decade, extracellular vesicles (EVs), which include apoptotic bodies, microvesicles, and exosomes, have emerged as important players in cell-to-cell communication in normal physiology and pathological conditions. EVs encapsulate and convey various bioactive molecules that are further transmitted to neighboring or more distant cells, where they induce various signaling cascades. The message delivered to the target cells is dependent on EV composition, which, in turn, is determined by the cell of origin and the surrounding microenvironment during EV biogenesis. Among their multifaceted role in the modulation of biological responses, the involvement of EVs in vascular development, growth, and maturation has been widely documented and their potential therapeutic application in regenerative medicine or angiogenesis-related diseases is drawing increasing interest. EVs derived from various cell types have the potential to deliver complex information to endothelial cells and to induce either pro- or antiangiogenic signaling. As dynamic systems, in response to changes in the microenvironment, EVs adapt their cargo composition to fine-tune the process of blood vessel formation. This article reviews the current knowledge on the role of microvesicles and exosomes from various cellular origins in angiogenesis, with a particular emphasis on the underlying mechanisms, and discusses the main challenges and prerequisites for their therapeutic applications.
Endothelial progenitor cell (EPC) nomenclature remains ambiguous and there is a general lack of concordance in the stem cell field with many distinct cell sub-types continually grouped under the term “EPC”. It would be highly advantageous to agree standards to confirm an endothelial progenitor phenotype and this should include detailed immunophenotyping, potency assays, and clear separation from haematopoietic angiogenic cells which are not endothelial progenitors. In this review, we seek to discourage the indiscriminate use of ‘EPCs’, and instead propose precise terminology based on defining cellular phenotype and function. Endothelial colony forming cells (ECFCs) and myeloid angiogenic cells (MACs) are examples of two distinct and well-defined cell types that have been considered ‘EPCs’ because they both promote vascular repair, albeit by completely different mechanisms of action. It is acknowledged that scientific nomenclature should be a dynamic process driven by technological and conceptual advances; ergo the ongoing ‘EPC’ nomenclature ought not to be permanent and should become more precise in the light of strong scientific evidence. This is especially important as these cells become recognised for their role in vascular repair in health and disease; and, in some cases, progress towards use in cell therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.