Abbreviations: FCSS, fl ow cytometry seed screen; GR, cultivar Rojas of P. guenoarum; 4PT, sexual induced-tetraploid P. plicatulum; PMC, pollen mother cell; RAPD, random amplifi ed polymorphic DNA.
Trichloris crinita is a perennial forage grass species native to arid regions of the American continent. Due to its extensive area of distribution, good forage quality and resistance to drought and grazing, this species is widely utilised as forage and for revegetation purposes in environments with low water availability. Despite its importance, genetic improvement of T. crinita has been very limited, partly as consequence of the lack of knowledge on its mode of reproduction. In the present work, we studied the reproductive biology of T. crinita by means of embryological analyses, flow cytometric seed screen (FCSS), self-compatibility tests and progeny testing with morphological and molecular markers. Cytological analyses revealed embryo sacs with eight nuclei and of Polygonum type for all T. crinita accessions analysed. FCSS histograms exhibited two clear peaks corresponding to 2C and 3C DNA content, indicating embryo sacs of sexual origin. Controlled pollination experiments designed to evaluate seed set (%) demonstrated that T. crinita is self-compatible, whereas results from morphological and simple sequence repeat (SSR) marker analysis of progeny revealed lack of outcrossing. Together, these results indicate that T. crinita reproduces sexually. It is a self-compatible and autogamous species. It is expected that these data will have a positive impact in the genetics and breeding of this species, and therefore contribute to its proper utilisation in arid regions.
Aposporous apomictic plants form clonal maternal seeds by inducing the emergence of non-reduced (2n) embryo sacs in the ovule nucellus and the development of embryos by parthenogenesis. In previous work, we reported a plant-specific TRIMETHYLGUANOSINE SYNTHASE 1 (TGS1) gene (PN_TGS1-like) showing expression levels positively correlated with sexuality rates in facultative apomictic Paspalum notatum. PN_ TGS1-like displayed contrasting in situ hybridization patterns in apomictic and sexual plant ovules from premeiosis to anthesis. Here we transformed sexual P. notatum with a TGS1-like antisense construction under a constitutive promoter, in order to produce lines with reduced transcript representation. Antisense plants developed prominent trichomes on the adaxial leaf surface, a trait absent from control genotypes. Reproductive development analysis revealed occasional formation of twin ovules. While control individuals typically displayed a single meiotic embryo sac per ovule, antisense lines showed 12.93–15.79% of ovules bearing extra nuclei, which can be assigned to aposporous-like embryo sacs (AES-like) or, alternatively, to gametophytes with a misguided cell fate development. Moreover, around 8.42–9.52% of ovules showed what looked like a combination of meiotic and aposporous-like sacs. Besides, 32.5% of ovules at early developmental stages displayed nucellar cells with prominent nuclei resembling apospory initials (AIs), which surrounded the megaspore mother cell (MMC) or the MMC-derived meiotic products. Two or more concurrent meiosis events were never detected, which suggest a non-reduced nature for the extra nuclei observed in the mature ovules, unless they were generated by proliferation and misguided differentiation of the legitimate meiotic products. The antisense lines produced a similar amount of viable even-sized pollen with respect to control genotypes, and formed an equivalent full seed set (∼9% of total seeds) after self-pollination. Flow cytometry analyses of caryopses derived from antisense lines revealed that all full seeds had originated from meiotic embryo sacs (i.e. by sexuality). A reduction of 25.55% in the germination percentage was detected when comparing antisense lines with controls. Our results indicate that PN_ TGS1-like influences ovule, gametophyte and possibly embryo development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.