We develop a Fluctuating Immersed Boundary (FIB) method for performing Brownian dynamics simulations of confined particle suspensions. Unlike traditional methods which employ analytical Green's functions for Stokes flow in the confined geometry, the FIB method uses a fluctuating finite-volume Stokes solver to generate the action of the response functions "on the fly." Importantly, we demonstrate that both the deterministic terms necessary to capture the hydrodynamic interactions among the suspended particles, as well as the stochastic terms necessary to generate the hydrodynamically correlated Brownian motion, can be generated by solving the steady Stokes equations numerically only once per time step. This is accomplished by including a stochastic contribution to the stress tensor in the fluid equations consistent with fluctuating hydrodynamics. We develop novel temporal integrators that account for the multiplicative nature of the noise in the equations of Brownian dynamics and the strong dependence of the mobility on the configuration for confined systems. Notably, we propose a random finite difference approach to approximating the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. Through comparisons with analytical and existing computational results, we numerically demonstrate the ability of the FIB method to accurately capture both the static (equilibrium) and dynamic properties of interacting particles in flow.
We develop an inertial coupling method for modeling the dynamics of point-like "blob" The coupling between the fluid and the blob is based on a no-slip constraint equating the particle velocity with the local average of the fluid velocity, and conserves momentum and energy. We demonstrate that the formulation obeys a fluctuation-dissipation balance, owing to the non-dissipative nature of the no-slip coupling. We develop a spatiotemporal discretization that preserves, as best as possible, these properties of the continuum formulation. In the spatial discretization, the local averaging and spreading operations are accomplished using compact kernels commonly used in immersed boundary methods. We find that the special properties of these kernels allow the blob to provide an effective model of a particle; specifically, the volume, mass, and hydrodynamic properties of the blob are remarkably grid-independent. We develop a second-order semi-implicit temporal integrator that maintains discrete fluctuation-dissipation balance, and is not limited in stability by viscosity. Furthermore, the temporal scheme requires only constant-coefficient Poisson and Helmholtz linear solvers, enabling a very efficient and simple FFT-based implementation on GPUs. We numerically investigate the performance of the method on several standard test problems. In the deterministic setting, we find the blob to be a remarkably robust approximation to a rigid sphere, at both low and high Reynolds numbers. In the stochastic setting, we study in detail the short and long-time behavior of the velocity autocorrelation function and observe agreement with all of the known behavior for rigid sphere immersed in a fluctuating fluid. The proposed inertial coupling method provides a low-cost coarse-grained (minimal resolution) model of particulate flows over a wide range of time-scales ranging from 2 Brownian to convection-driven motion.
We develop a rigid multiblob method for numerically solving the mobility problem for suspensions of passive and active rigid particles of complex shape in Stokes flow in unconfined, partially confined, and fully confined geometries. As in a number of existing methods, we discretize rigid bodies using a collection of minimally-resolved spherical blobs constrained to move as a rigid body, to arrive at a potentially large linear system of equations for the unknown Lagrange multipliers and rigid-body motions. Here we develop a block-diagonal preconditioner for this linear system and show that a standard Krylov solver converges in a modest number of iterations that is essentially independent of the number of particles. Key to the efficiency of the method is a technique for fast computation of the product of the blob-blob mobility matrix and a vector. For unbounded suspensions, we rely on existing analytical expressions for the Rotne-Prager-Yamakawa tensor combined with a fast multipole method (FMM) to obtain linear scaling in the number of particles. For suspensions sedimented against a single no-slip boundary, we use a direct summation on a Graphical Processing Unit (GPU), which gives quadratic asymptotic scaling with the number of particles. For fully confined domains, such as periodic suspensions or suspensions confined in slit and square channels, we extend a recently-developed rigid-body immersed boundary method ["An immersed boundary method for rigid
We introduce numerical methods for simulating the diffusive motion of rigid bodies of arbitrary shape immersed in a viscous fluid. We parameterize the orientation of the bodies using normalized quaternions, which are numerically robust, space efficient, and easy to accumulate. We construct a system of overdamped Langevin equations in the quaternion representation that accounts for hydrodynamic effects, preserves the unit-norm constraint on the quaternion, and is time reversible with respect to the Gibbs-Boltzmann distribution at equilibrium. We introduce two schemes for temporal integration of the overdamped Langevin equations of motion, one based on the Fixman midpoint method and the other based on a random finite difference approach, both of which ensure that the correct stochastic drift term is captured in a computationally efficient way. We study several examples of rigid colloidal particles diffusing near a no-slip boundary and demonstrate the importance of the choice of tracking point on the measured translational mean square displacement (MSD). We examine the average short-time as well as the long-time quasi-two-dimensional diffusion coefficient of a rigid particle sedimented near a bottom wall due to gravity. For several particle shapes, we find a choice of tracking point that makes the MSD essentially linear with time, allowing us to estimate the long-time diffusion coefficient efficiently using a Monte Carlo method. However, in general, such a special choice of tracking point does not exist, and numerical techniques for simulating long trajectories, such as the ones we introduce here, are necessary to study diffusion on long time scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.