Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids 1,2. To date, ferroptosis has been believed to be restrained only by the phospholipid hydroperoxide (PLOOH)-reducing enzyme glutathione peroxidase 4 (GPX4) 3,4 and radicaltrapping antioxidants (RTAs) 5,6. The factors which underlie a given cell type's sensitivity to ferroptosis 7 is, however, critical to understand the pathophysiological role of ferroptosis and how it may be exploited for cancer treatment. Although metabolic constraints 8 and phospholipid composition 9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been yet been identified that account for ferroptosis resistance. We undertook an expression cloning approach to identify genes able to complement GPX4 loss. These efforts uncovered the flavoprotein "apoptosis inducing factor mitochondria-associated 2 (AIFM2)" as a previously unrecognized anti-ferroptotic gene. AIFM2, hereafter renamed "ferroptosis-suppressor-protein 1" (FSP1), initially described as a pro-apoptotic gene 11 , confers an unprecedented protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that ferroptosis suppression by FSP1 is mediated via ubiquinone (CoQ10): its reduced form ubiquinol traps lipid peroxyl radicals that mediate lipid peroxidation, while FSP1 catalyses its regeneration by using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. Conclusively, FSP1/CoQ10/NAD(P)H exists as a standalone parallel system, which cooperates with GPX4 and glutathione (GSH) to suppress phospholipid peroxidation (pLPO) and ferroptosis. program NEUROPROTEKT (03VP04260), as well as the m4 Award provided by the Bavarian Ministry of Economic Affairs, Regional Development and Energy (StMWi) to M.C., the Cancer Research UK
Selenoproteins are rare proteins among all kingdoms of life containing the 21 amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4 cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.
Docosahexaenoic acid (DHA) is an n-3 polyunsaturated fatty acid that is highly enriched in the brain, and the oxidation products of DHA are present or increased during neurodegenerative disease progression. The characterization of the oxidation products of DHA is critical to understanding the roles that these products play in the development of such diseases. In this study, we developed a sensitive and specific analytical tool for the detection and quantification of twelve major DHA hydroperoxide (HpDoHE) and hydroxide (HDoHE) isomers (isomers at positions 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19 and 20) in biological systems. In this study, HpDoHE were synthesized by photooxidation, and the corresponding hydroxides were obtained by reduction with NaBH4. The isolated isomers were characterized by LC-MS/MS, and unique and specific fragment ions were chosen to construct a selected reaction monitoring (SRM) method for the targeted quantitative analysis of each HpDoHE and HDoHE isomer. The detection limits for the LC-MS/MS-SRM assay were 1−670 pg for HpDoHE and 0.5−8.5 pg for HDoHE injected onto a column. Using this method, it was possible to detect the basal levels of HDoHE isomers in both rat plasma and brain samples. Therefore, the developed LC-MS/MS-SRM can be used as an important tool to identify and quantify the hydro(pero)xy derivatives of DHA in biological system and may be helpful for the oxidative lipidomic studies.
Coconut water contains several uncharacterized substances and is widely used in the human consumption. In this paper we detected and quantified ascorbic acid and caffeic acid and total phenolics in several varieties of coconut using HPLS/MS/MS (25.8 ± 0.6 µg/mL and 1.078 ± 0.013 µg/mL and 99.7 µg/mL, respectively, in the green dwarf coconut water, or 10 mg and 539 µg and 39.8 mg for units of coconut consumed, 500 ± 50 mL). The antioxidant potential of four coconut varieties (green dwarf, yellow dwarf, red dwarf and yellow Malaysian) was compared with two industrialized coconut waters and the lyophilized water of the green dwarf variety. All varieties were effective in scavenging the DPPH radical (IC 50 =73 µL) and oxide nitric (0.1 mL with an IP of 29.9%) as well as in inhibiting the in vitro production of thiobarbituric acid reactive substances (1 mL with an IP of 34.4%), highlighting the antioxidant properties of the green dwarf which it is the most common used. In cell culture, the green dwarf water was efficient in protecting against oxidative damages induced by hydrogen peroxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.