Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol‐radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol‐driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed‐phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of ‐1.6 to ‐0.6 W m−2, or ‐2.0 to ‐0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial‐era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds.
Summary (149 words of referenced text): 46The climate impact of aerosols is highly uncertain owing primarily to their poorly quantified 47 influence on cloud properties. During 2014-15, a fissure eruption in Holuhraun (Iceland) 48 emitted huge quantities of sulphur dioxide, resulting in significant reductions in liquid cloud 49 droplet size. Using satellite observations and detailed modelling, we estimate a global mean 50 radiative forcing from the resulting aerosol-induced cloud brightening for the time of the 51 eruption of around -0.2 W.m -2 . Changes in cloud amount or liquid water path are 52 undetectable, indicating that these aerosol-cloud indirect effects are modest. It supports the 53 idea that cloud systems are well buffered against aerosol changes as only impacts on cloud 54 effective radius appear relevant from a climate perspective, thus providing a strong constraint 55 on aerosol-cloud interactions. This result will reduce uncertainties in future climate 56 projections as we are able to reject the results from climate models with an excessive liquid 57 water path response. 58 59Main Text: (3103 words of referenced text, including concluding paragraph) 60 The 2014-15 eruption at Holuhraun (486 words of referenced text): 61Anthropogenic emissions that affect climate are not just confined to greenhouse gases. 62Sulphur dioxide and other pollutants form atmospheric aerosols that can scatter and absorb 63 sunlight and can influence the properties of clouds, modulating the Earth-atmosphere energy 64 balance. Aerosols act as cloud condensation nuclei (CCN); an increase in CCN translates into 65 a higher number of smaller, more reflective cloud droplets that scatter more sunlight back to 66 space 1 (the ÔfirstÕ indirect effect of aerosols). Smaller cloud droplets decrease the efficiency 67 of collision-coalescence processes that are pivotal in rain initiation, thus aerosol-influenced 68 clouds may retain more liquid water and extend coverage/lifetime 2,3 (the ÔsecondÕ or Ôcloud 69 lifetimeÕ indirect effect). Aerosols usually co-vary with key environmental variables making 70 it difficult to disentangle aerosol-cloud impacts from meteorological variability [4][5][6] . 71Additionally, clouds themselves are complex transient systems subject to dynamical 72 feedbacks (e.g. cloud top entrainment/evaporation, invigoration of convection) which 73 influence cloud response [7][8][9][10][11][12] . These aspects present great challenges in evaluating and 74 constraining aerosol-cloud interactions (ACI) in General Circulation Models (GCM) 13-17 , 75 with particular contentious debate surrounding the relative importance of these feedback 76 mechanisms. 77Nonetheless, anthropogenic aerosol emissions are thought to cool the Earth via indirect 78 effects 17 , but the uncertainty ranges from -1.2 to -0.0 W.m -2 (90% confidence interval) due to 79 i) a lack of characterization of the pre-industrial aerosol state 15,18,19 , and ii) model parametric 80 and structural errors in representing cloud responses to aerosol chan...
Abstract. African biomass burning emission inventories for gaseous and particulate species have been constructed at a resolution of 1 km by 1km with daily coverage for the 2000-2007 period. These inventories are higher than the GFED2 inventories, which are currently widely in use. Evaluation specifically focusing on combustion aerosol has been carried out with the ORISAM-TM4 global chemistry transport model which includes a detailed aerosol module. This paper compares modeled results with measurements of surface BC concentrations and scattering coefficients from the AMMA Enhanced Observations period, aerosol optical depths and single scattering albedo from AERONET sunphotometers, LIDAR vertical distributions of extinction coefficients as well as satellite data. Aerosol seasonal and interannual evolutions over the 2004-2007 period observed at regional scale and more specifically at the Djougou (Benin) and Banizoumbou (Niger) AMMA/IDAF sites are well reproduced by our global model, indicating that our biomass burning emission inventory appears reasonable.
Abstract. The HadGEM2 earth system climate model was used to assess the impact of biomass burning on surface ozone concentrations over the Amazon forest and its impact on vegetation, under present-day climate conditions. Here we consider biomass burning emissions from wildfires, deforestation fires, agricultural forest burning, and residential and commercial combustion. Simulated surface ozone concentration is evaluated against observations taken at two sites in the Brazilian Amazon forest for years 2010 to 2012. The model is able to reproduce the observed diurnal cycle of surface ozone mixing ratio at the two sites, but overestimates the magnitude of the monthly averaged hourly measurements by 5–15 ppb for each available month at one of the sites. We vary biomass burning emissions over South America by ±20, 40, 60, 80 and 100% to quantify the modelled impact of biomass burning on surface ozone concentrations and ozone damage on vegetation productivity over the Amazon forest. We used the ozone damage scheme in the "high" sensitivity mode to give an upper limit for this effect. Decreasing South American biomass burning emissions by 100% (i.e. to zero) reduces surface ozone concentrations (by about 15 ppb during the biomass burning season) and suggests a 15% increase in monthly mean net primary productivity averaged over the Amazon forest, with local increases up to 60%. The simulated impact of ozone damage from present-day biomass burning on vegetation productivity is about 230 TgC yr−1. Taking into account that uncertainty in these estimates is substantial, this ozone damage impact over the Amazon forest is of the same order of magnitude as the release of carbon dioxide due to fire in South America; in effect it potentially doubles the impact of biomass burning on the carbon cycle.
Abstract. The representations of clouds, aerosols, and cloud–aerosol–radiation impacts remain some of the largest uncertainties in climate change, limiting our ability to accurately reconstruct past climate and predict future climate. The south-east Atlantic is a region where high atmospheric aerosol loadings and semi-permanent stratocumulus clouds are co-located, providing an optimum region for studying the full range of aerosol–radiation and aerosol–cloud interactions and their perturbations of the Earth's radiation budget. While satellite measurements have provided some useful insights into aerosol–radiation and aerosol–cloud interactions over the region, these observations do not have the spatial and temporal resolution, nor the required level of precision to allow for a process-level assessment. Detailed measurements from high spatial and temporal resolution airborne atmospheric measurements in the region are very sparse, limiting their use in assessing the performance of aerosol modelling in numerical weather prediction and climate models. CLARIFY-2017 was a major consortium programme consisting of five principal UK universities with project partners from the UK Met Office and European- and USA-based universities and research centres involved in the complementary ORACLES, LASIC, and AEROCLO-sA projects. The aims of CLARIFY-2017 were fourfold: (1) to improve the representation and reduce uncertainty in model estimates of the direct, semi-direct, and indirect radiative effect of absorbing biomass burning aerosols; (2) to improve our knowledge and representation of the processes determining stratocumulus cloud microphysical and radiative properties and their transition to cumulus regimes; (3) to challenge, validate, and improve satellite retrievals of cloud and aerosol properties and their radiative impacts; (4) to improve the impacts of aerosols in weather and climate numerical models. This paper describes the modelling and measurement strategies central to the CLARIFY-2017 deployment of the FAAM BAe146 instrumented aircraft campaign, summarizes the flight objectives and flight patterns, and highlights some key results from our initial analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.