Symbiotic associations are widespread in nature and represent a driving force in evolution. They are known to impact fitness, and thereby shape the host phenotype. Insects subsisting on nutritionally poor substrates have evolved mutualistic relationships with intracellular symbiotic bacteria (endosymbionts) that supply them with metabolic components lacking in their diet. In many species, endosymbionts are hosted within specialized host cells, called the bacteriocytes, and transmitted vertically across host generations. How hosts balance the costs and benefits of having endosymbionts, and whether and how they adjust symbiont load to their physiological needs, remains largely unexplored. By investigating the cereal weevil Sitophilus association with the Sodalis pierantonius endosymbiont, we discover that endosymbiont populations intensively multiply in young adults, before being rapidly eliminated within few days. We show that young adults strongly depend on endosymbionts and that endosymbiont proliferation after metamorphosis matches a drastic host physiological need for the tyrosine (Tyr) and phenylalanine (Phe) amino acids to rapidly build their protective exoskeleton. Tyr and Phe are precursors of the dihydroxyphenylalanine (DOPA) molecule that is an essential component for the cuticle synthesis. Once the cuticle is achieved, DOPA reaches high amounts in insects, which triggers endosymbiont elimination. This elimination relies on apoptosis and autophagy activation, allowing digestion and recycling of the endosymbiont material. Thus, the weevil-endosymbiont association reveals an adaptive interplay between metabolic and cellular functions that minimizes the cost of symbiosis and speeds up the exoskeleton formation during a critical phase when emerging adults are especially vulnerable.
Many insects developing on nutritionally unbalanced diets have evolved symbiotic associations with vertically transmitted intracellular bacteria (endosymbionts) that provide them with metabolic components, thereby improving the host’s abilities to thrive on such poor ecological niches. While host-endosymbiont coevolutionary constraints are known to entail massive genomic changes in the microbial partner, host’s genomic evolution remains elusive, particularly with regard to the immune system. In the cereal weevil Sitophilus spp., which houses Sodalis pierantonius, endosymbionts are secluded in specialized host cells, the bacteriocytes that group together as an organ, the bacteriome. We previously reported that at standard conditions, the bacteriome highly expresses the coleoptericin A (colA) antimicrobial peptide (AMP), which was shown to prevent endosymbiont escape from the bacteriocytes. However, following the insect systemic infection by pathogens, the bacteriome upregulates a cocktail of AMP encoding genes, including colA. The regulations that allow these contrasted immune responses remain unknown. In this short report, we provide evidence that an IMD-like pathway is conserved in two sibling species of cereal weevils, Sitophilus oryzae and Sitophilus zeamais. RNA interference (RNAi) experiments showed that imd and relish genes are essential for (i) colA expression in the bacteriome under standard conditions, (ii) AMP up-regulation in the bacteriome following a systemic immune challenge, and (iii) AMP systemic induction following an immune challenge. Histological analyses also showed that relish inhibition by RNAi resulted in endosymbiont escape from the bacteriome, strengthening the involvement of an IMD-like pathway in endosymbiont control. We conclude that Sitophilus’ IMD-like pathway mediates both the bacteriome immune program involved in endosymbiont seclusion within the bacteriocytes and the systemic and local immune responses to exogenous challenges. This work provides a striking example of how a conserved immune pathway, initially described as essential in pathogen clearance, also functions in the control of mutualistic associations.Electronic supplementary materialThe online version of this article (10.1186/s40168-017-0397-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.