IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, MAY 03-08, 2010International audienceAutonomous landing on unknown extraterrestrial bodies requires fast, noise-resistant motion processing to elicit appropriate steering commands. Flying insects excellently master visual motion sensing techniques to cope with highly parallel data at a low energy cost, using dedicated motion processing circuits. Results obtained in neurophysiological, behavioural, and biorobotic studies on insect flight control were used to safely land a spacecraft on the Moon in a simulated environment. ESA's Advanced Concepts Team has identified autonomous lunar landing as a relevant situation for testing the potential applications of innovative bio-inspired visual guidance systems to space missions. Biomimetic optic flow-based strategies for controlling automatic landing were tested in a very realistic simulated Moon environment. Visual information was provided using the PANGU software program and used to regulate the optic flow generated during the landing of a two degrees of freedom spacecraft. The results of the simulation showed that a single elementary motion detector coupled to a regulator robustly controlled the autonomous descent and the approach of the simulated moonlander. ``Low gate'' located approximately 10 m above the ground was reached with acceptable vertical and horizontal speeds of 4 m/s and 5 m/s, respectively. It was also established that optic flow sensing methods can be used successfully to cope with temporary sensor blinding and poor lighting conditions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.