Homeostatic control of blood glucose requires different physiological responses in the fasting and post-prandial states. We reasoned that glucose measurements under non-standardised conditions (random glucose, RG) may capture diverse glucoregulatory processes more effectively than previous genome-wide association studies (GWAS) of fasting glycaemia or after standardised glucose loads. Through GWAS meta-analysis of RG in 493,036 individuals without diabetes of diverse ethnicities we identified 128 associated loci represented by 162 distinct signals, including 14 with sex-dimorphic effects, 9 discovered through trans-ethnic analysis, and 70 novel signals for glycaemic traits. Novel RG loci were particularly enriched in expression in the ileum and colon, indicating a prominent role for the gastrointestinal tract in the control of blood glucose. Functional studies and molecular dynamics simulations of coding variants of GLP1R, a well-established type 2 diabetes treatment target, provided a genetic framework for optimal selection of GLP-1R agonist therapy. We also provided new evidence from Mendelian randomisation that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Thus, our approach based on RG GWAS provided wide-ranging insights into the biology of glucose regulation, diabetes complications and the potential for treatment stratification.
AbstractUnhealthy dietary habits are leading risk factors for life-altering diseases and mortality. Large-scale biobanks now enable genetic analysis of traits with modest heritability, such as diet. We performed genomewide association on 85 single food intake and 85 principal component-derived dietary patterns from food frequency questionnaires in UK Biobank. We identified 814 associated loci, including olfactory receptor associations with fruit and tea intake; 136 associations were only identified using dietary patterns. Mendelian randomization suggests a Western vs. prudent dietary pattern is causally influenced by factors correlated with education but is not strongly causal for coronary artery disease or type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.