While the components of the MiroSurge system are shown to fulfil the rigid design requirements for robotic telesurgery with force feedback, the system remains versatile, which is supposed to be a key issue for the further development and optimisation.
Abstract-This video presents the in-house developed DLR MiroSurge robotic system for surgery. As shown, the system is suitable for both minimally invasive and open surgery. Essential part of the system is the MIRO robot: The soft robotics feature enables intuitive interaction with the robot. In the presented minimally invasive robotic setup three MIROs guide an endoscopic stereo camera and two endoscopic instruments with force feedback sensors. The master console for teleoperation consists of an autostereoscopic monitor and force reflecting input devices for both hands. Versatility is shown with two additional applications: For assistance in manual minimally invasive surgery a MIRO robot automatically guides the endoscope such that the surgical instrument is always in view. In a biopsy application the MIRO robot is positioning the needle with navigation system support.
Thus, the waterjet technology can be fully integrated into robotic surgery systems and benefit from their inherent abilities.
This paper proposes a method for accurate robotic motion compensation of a freely moving target object. This approaches a typical problem in medical scenarios, where a robotic system needs to compensate physiological movements of a target region related to the patient. An optical tracking system measures the poses of the robot's end-effector and the moving target. The task is to track the target with the robot in a desired relative pose. Arbitrary motion in 6 DoF is covered. The position controller of the medical light-weight robot MIRO is enhanced by a Cartesian displacement observer. The proposed observer feedback preserves the dynamics of the robot, while achieving high accuracy in task space. The target object is equipped with an inertial measurement unit in addition to tracking markers. Target sensor data is fused by an extended Kalman filter in a tightly coupled approach. The robot control and the target tracking in the task space aim to combine accuracy, dynamic performance and robustness to marker occlusions. The algorithms are verified with the DLR MIRO, an experimental target platform, and a commercial tracking system. The experiments demonstrate rapid convergence to desired Cartesian poses and good dynamic tracking performance even at higher target motion speed.
This paper discusses the concept of plenoptic hand lens imagers for in-situ close-range imaging during planetary exploration missions. Hand lens imagers, such as the Mars Hand Lens Imager on-board the Mars rover Curiosity, are important cameras for in-situ investigations, e.g. of rock layer, minerals or dust. They are also important for the preparation and documentation of other instrument operations and for rover health assessment. Due to the small working distance between object and the camera's main lens, significant physical limitations affect the imaging performance. Most evident is the limited depth of field of a few millimeters for working distances of a few centimeters. This requires a highly accurate positioning of the camera and also limits the in-focus content of an image significantly. Hence, in order to have an extended object completely in focus, a sequence of images, each being focused to a different distance, is required. A single, passive camera is insufficient to compute depth from a single shot; only the combination of multiple images, either taken from different vantage points or at different focal settings, allows this. To overcome those limitations, we propose the use of plenoptic cameras as hand lens imagers. From a single exposure, they allow to create an extended depth of field image and at the same time a metric depth map while maintaining a more open aperture. These and other advantages might make it possible to omit space grade focus mechanisms in the future. A plenoptic camera is achieved by adding an additional matrix of lenslets shortly in front of the image sensor of a conventional camera. Hence, available space camera hardware can be used to form a new type of sensor. Due to its recording concept, a plenoptic camera maintains the depth of the scene as it is projected into the camera by the main lens. Thanks to the parallax between the lenslets, it is possible to compute depth via triangulation for each image point as well as a high resolution 2-D extended depth of field image. This paper provides an overview of the state of the art of hand lens imaging from which we derive a set of common requirements for future devices. We briefly introduce the plenoptic camera technology and provide first experimental results on the imaging performance based on samples of test targets and rocks. The results show that our preliminary plenoptic camera setup can comply with the requirements for in-situ hand lens imaging in terms of image quality, depth estimation and the usability for planetology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.