Kinetic fragility and cooperativity length, two major characteristics of the relaxation dynamics at the glass transition, are, respectively, investigated by dynamic mechanical analysis and modulated temperature differential scanning calorimetry in a series of interpenetrated polymer networks based on acrylate and epoxy systems. The relaxation dynamics are impacted by two variables: the rigidity of the network, and the structural heterogeneity resulting from blending. However, the fragility and the cooperativity do not vary similarly. The glass transition progressively broadens as the mass fractions of acrylate and epoxy become equivalent, leading to a strong decrease in cooperativity. On the other hand, under the same conditions, the fragility transitions between the lower value of pure acrylate and theAdditional Supporting Information may be found in the online version of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.