PIDD (p53-induced protein with a death domain [DD]), together with the bipartite adapter protein RAIDD (receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a DD), is implicated in the activation of pro–caspase-2 in a high molecular weight complex called the PIDDosome during apoptosis induction after DNA damage. To investigate the role of PIDD in cell death initiation, we generated PIDD-deficient mice. Processing of caspase-2 is readily detected in the absence of PIDDosome formation in primary lymphocytes. Although caspase-2 processing is delayed in simian virus 40–immortalized pidd−/− mouse embryonic fibroblasts, it still depends on loss of mitochondrial integrity and effector caspase activation. Consistently, apoptosis occurs normally in all cell types analyzed, suggesting alternative biological roles for caspase-2 after DNA damage. Because loss of either PIDD or its adapter molecule RAIDD did not affect subcellular localization, nuclear translocation, or caspase-2 activation in high molecular weight complexes, we suggest that at least one alternative PIDDosome-independent mechanism of caspase-2 activation exists in mammals in response to DNA damage.
Induction of apoptosis in tumor cells by direct activation of the Bcl-2-regulated apoptosis pathway by small molecule drugs carries high hopes to overcome the shortcomings of current anticancer therapies. This novel therapy concept builds on emerging insights into how Bcl-2-like molecules maintain mitochondrial integrity and how pro-apoptotic BH3-only proteins lead to its disruption. Means to unleash the pro-apoptotic potential of BH3-only proteins in tumor cells, or to bypass the need for BH3-only proteins by directly blocking possible interactions of Bcl-2-like pro-survival molecules with Bax and/or Bak, constitute interesting options for the design of novel anticancer therapies. For the optimization and clinical implementation of these novel anticancer strategies, a detailed understanding of the role of individual BH3-only proteins in cell death signaling in healthy cells and during tumor suppression is required. In this review, we will touch on the latest findings on BH3-only protein function and attempts to define the molecular properties of the so-called 'BH3 mimetics,' a novel class of anticancer agents, able to prompt apoptosis in tumor cells, regardless of their p53 or Bcl-2 status.
After cessation of lactation, involution of the mouse mammary gland proceeds in two distinct phases, a reversible and an irreversible one, which leads to the death and removal of alveolar cells. Cell death is preceded by the loss of STAT5 activity, which abrogates cell differentiation and gain of STAT3 activity. Despite early observations implicating BCL2 (B cell lymphoma 2) family proteins in this process, recent evidence suggests that STAT3-controlled cathepsin activity is most critical for cell death at the early stage of involution. Somewhat surprisingly, this cell death associates with but does not depend on the activation of pro-apoptotic effector caspases. However, transgenic overexpression of BCL2, that blocks caspase activation, delays involution while conditional deletion of BclX accelerates this process, suggesting that BCL2 family proteins are needed for the effective execution of involution. Here, we report on the transcriptional induction of multiple pro-apoptotic BCL2 family proteins of the ‘BH3-only' subgroup during involution and the rate-limiting role of BIM in this process. Loss of Bim delayed epithelial cell clearance during involution after forced weaning in mice, whereas the absence of related Bmf had minor and loss of Bad or Noxa no impact on this process. Consistent with a contribution of BCL2 family proteins to the second wave of cell death during involution, loss of Bim reduced the number of apoptotic cells in this irreversible phase. Notably, the expression changes observed within the BCL2 family did not depend on STAT3 signalling, in line with its initiating role early in the process, but rather appear to result from relief of repression by STAT5. Our findings support the existence of a signalling circuitry regulating the irreversible phase of involution in mice by engaging BH3-only protein-driven mitochondrial apoptosis.
Pro-apoptotic Bcl-2 family members of the BH3-only subgroup are critical for the establishment and maintenance of tissue homeostasis and can mediate apoptotic cell death in response to developmental cues or exogenously induced forms of cell stress and damage. Based on biochemical experiments as well as genetic studies in mice, the BH3-only proteins Bad and Bmf have been implicated in different proapoptotic events such as those triggered by glucose- or trophic factor-deprivation, glucocorticoids, or histone deacetylase inhibition in lymphocytes as well as suppression of B cell lymphomagenesis upon aberrant expression of c-Myc. To address possible redundancies in cell death regulation and tumor suppression, we generated compound mutant mice lacking both genes. Our studies revealed lack of redundancy in most paradigms of lymphocyte apoptosis tested in tissue culture. Only spontaneous cell death of thymocytes kept in low glucose or that of pre-B cells deprived of cytokines was significantly delayed when both genes were lacking. Of note, despite these minor apoptosis defects we observed compromised lymphocyte homeostasis in vivo that affected mainly the B cell lineage. Long-term follow up revealed significantly reduced latency to spontaneous tumor formation in aged mice when both genes were lacking. Together our study suggests that Bad and Bmf co-regulate lymphocyte homeostasis and limit spontaneous transformation by mechanisms that may not exclusively be limited to the induction of lymphocyte apoptosis.
Genetically engineered mouse models are frequently used to identify pathophysiological consequences of deregulated cell death. Targeting pro-apoptotic or anti-apoptotic proteins of the extrinsic or intrinsic apoptotic signalling cascade is state of the art since more than two decades. Such animal models have been increasingly made use of over the past years to study loss- or gain-of-function consequences of one or more components of the molecular machinery leading to cell death. These studies have helped to separate redundant from non-redundant functions of apoptosis-related proteins in normal physiology and sometimes unravelled unexpected phenotypes. However, correct interpretation of data derived from knockout mice or derived cells and cell lines is often flawed by the comparison of cells originating from different inbred or mixed genetic backgrounds. Here we want to highlight some basic problems associated with genetic background-based modulation of cell death sensitivity and describe some methods that we use to investigate cell death responses in hematopoietic and non-hematopoietic cells. Thereby, we show that hematopoietic cells derived from wild type mice on a C57BL/6:129/SvJ recombinant mixed genetic background are significantly more resistant to spontaneous cell death or DNA-damage induced apoptosis in vitro than cells derived from inbred C57BL/6 mice. Furthermore, we show as an example that C57BL/6 mice are more susceptible to γ-irradiation induced cell death after whole body irradiation in vivo and subsequent T cell lymphomagenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.