We study multiplicative SDEs perturbed by an additive fractional Brownian motion on another probability space. Provided the Hurst parameter is chosen in a specified regime, we establish existence of probabilistically weak solutions to the SDE if the measurable diffusion coefficient merely satisfies an integrability condition. In particular, this allows to consider certain singular diffusion coefficients.
We study pathwise regularization by noise for equations on the plane in the spirit of the framework outlined by Catellier and Gubinelli (Stoch Process Appl 126(8):2323–2366, 2016). To this end, we extend the notion of non-linear Young equations to a two dimensional domain and prove existence and uniqueness of such equations. This concept is then used in order to prove regularization by noise for stochastic equations on the plane. The statement of regularization by noise is formulated in terms of the regularity of the local time associated to the perturbing stochastic field. For this, we provide two quantified example: a fractional Brownian sheet and the sum of two one-parameter fractional Brownian motions. As a further illustration of our regularization results, we also prove well-posedness of a 1D non-linear wave equation with a noisy boundary given by fractional Brownian motions. A discussion of open problems and further investigations is provided.
We prove a modification to the classical maximal inequality for stochastic convolutions in 2-smooth Banach spaces using the factorization method. This permits to study semilinear stochastic partial differential equations with unbounded diffusion operators driven by cylindrical Brownian motion via the mild solution approach. In the case of finite dimensional driving noise, provided sufficient regularity on the coefficients, we establish existence and uniqueness of strong solutions.
Consider a system of n weakly interacting particles driven by independent Brownian motions. In many instances, it is well known that the empirical measure converges to the solution of a partial differential equation, usually called McKean-Vlasov or Fokker-Planck equation, as n tends to infinity. We propose a relatively new approach to show this convergence by directly studying the stochastic partial differential equation that the empirical measure satisfies for each fixed n. Under a suitable control on the noise term, which appears due to the finiteness of the system, we are able to prove that the stochastic perturbation goes to zero, showing that the limiting measure is a solution to the classical McKean-Vlasov equation. In contrast with known results, we do not require any independence or finite moment assumption on the initial condition, but the only weak convergence.The evolution of the empirical measure is studied in a suitable class of Hilbert spaces where the noise term is controlled using two distinct but complementary techniques: rough paths theory and maximal inequalities for self-normalized processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.