Abstract. One-round authenticated key exchange (ORKE) is an established research area, with many prominent protocol constructions like HMQV (Krawczyk, CRYPTO 2005) and Naxos (La Macchia et al., ProvSec 2007), and many slightly different, strong security models. Most constructions combine ephemeral and static Diffie-Hellman Key Exchange (DHKE), in a manner often closely tied to the underlying security model. We give a generic construction of ORKE protocols from general assumptions, with security in the standard model, and in a strong security model where the attacker is even allowed to learn the randomness or the longterm secret of either party in the target session. The only restriction is that the attacker must not learn both the randomness and the long-term secret of one party of the target session, since this would allow him to recompute all internal states of this party, including the session key. This is the first such construction that does not rely on random oracles. The construction is intuitive, relatively simple, and efficient. It uses only standard primitives, namely non-interactive key exchange, a digital signature scheme, and a pseudorandom function, with standard security properties, as building blocks.
Abstract-Instant Messaging has gained popularity by users for both private and business communication as low-cost short message replacement on mobile devices. However, until recently, most mobile messaging apps did not protect confidentiality or integrity of the messages.Press releases about mass surveillance performed by intelligence services such as NSA and GCHQ motivated many people to use alternative messaging solutions to preserve the security and privacy of their communication on the Internet. Initially fueled by Facebook's acquisition of the hugely popular mobile messaging app WHATSAPP, alternatives claiming to provide secure communication experienced a significant increase of new users.A messaging app that claims to provide secure instant messaging and has attracted a lot of attention is TEXTSECURE. Besides numerous direct installations, its protocol is part of Android's most popular aftermarket firmware CYANOGEN-MOD. TEXTSECURE's successor Signal continues to use the underlying protocol for text messaging. In this paper, we present the first complete description of TEXTSECURE's complex cryptographic protocol, provide a security analysis of its three main components (key exchange, key derivation and authenticated encryption), and discuss the main security claims of TEXTSECURE. Furthermore, we formally prove that-if key registration is assumed to be secure-TEXTSECURE's push messaging can indeed achieve most of the claimed security goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.