The Baltic Sea is highly impacted by global warming and other anthropogenic changes and is one of the fastest‐warming marginal seas in the world. To detect trends in water temperature and to attribute them to atmospheric parameters, the results of two different ocean circulation models driven by reconstructed atmospheric forcing fields for the period 1850–2008 were analyzed. The model simulations were analyzed at temporal and spatial scales from seasonal to centennial and from intrabasin to basin, respectively. The strongest 150‐year trends were found in the annual mean bottom temperature of the Bornholm Deep (0.15 K/decade) and in summer mean sea surface temperature (SST) in Bothnian Bay (0.09–0.12 K/decade). A comparison of the time periods 1856–2005 and 1978–2007 revealed that the SST trends strengthened tenfold. An attribution analysis showed that most of the SST variability could be explained by the surface air temperature (i.e., sensible heat flux) and the latent heat flux. Wind parallel to the coast and cloudiness additionally explained SST variability in the coastal zone affected by the variations in upwelling and in offshore areas affected by the variations in solar radiation, respectively. In contrast, the high variability in stratification caused by freshwater and saltwater inflows does not impact the long‐term variability in the SST averaged over the Baltic Sea. The strongest SST trends since the 1980s can be explained by the superposition of global warming and a shift from the cold to the warm phase of the Atlantic Multidecadal Oscillation.
The Atlantic Multidecadal Oscillation (AMO) is a natural mode of variability of the North Atlantic sea surface temperature. The AMO can be used to describe the complex interaction of the coupled atmosphere-ocean system of the North Atlantic. By analyzing a preindustrial period of 850 years with a regional climate model, we show that the AMO influences the Baltic Sea. AMO-related changes of the atmospheric circulation affect precipitation over the Baltic Sea region, which leads to altered river runoff influencing the salinity of the Baltic Sea. A wavelet coherence analysis reveals a persistent coherence between AMO and salinity for the whole period of 850 years. This suggests that the Baltic Sea is under the constant influence of the AMO. Our results provide strong evidence for long-term changes in the Baltic Sea as a result of changing AMO phases. Plain Language SummaryCoastal seas are of great importance to society. A prominent example of such a coastal sea is the Baltic Sea, since it is strongly impacted by human activities. However, besides the human footprint there are also natural phenomena, that influence the Baltic Sea. Especially climate phenomena over the North Atlantic can have a strong impact on the Baltic Sea. One such phenomenon is the so-called Atlantic Multidecadal Oscillation (AMO), a seesaw between warm and cold sea surface temperatures in the North Atlantic with a period of 60-90 years. Reliable observations only exist for a period of about 150 years, which is too short to study multidecadal time scales. Therefore, we use an 850 years long model simulation. Our results show that changes in North Atlantic sea surface temperature associated with the AMO influence the atmospheric circulation, which impacts the rain and snowfall over the Baltic Sea region. This in turn enhances or decreases the river runoff into the Baltic Sea and thus impacts the Baltic Sea salinity. Thus, the AMO has a strong influence on the Baltic Sea.
Abstract. Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.
Abstract. The Baltic Sea, located in northern Europe, is a semi-enclosed, shallow and tideless sea with seasonal sea-ice cover in its northern sub-basins. Its long water residence time contributes to oxygen depletion in the bottom water of its southern sub-basins. In this study, recently performed scenario simulations for the Baltic Sea including marine biogeochemistry were analysed and compared with earlier published projections. Specifically, dynamical downscaling using a regionally coupled atmosphere–ocean climate model was used to regionalise four global Earth system models. However, as the regional climate model does not include components representing terrestrial and marine biogeochemistry, an additional catchment and a coupled physical–biogeochemical model for the Baltic Sea were included. The scenario simulations take the impact of various global sea level rise scenarios into account. According to the projections, compared to the present climate, higher water temperatures, a shallower mixed layer with a sharper thermocline during summer, less sea-ice cover and greater mixing in the northern Baltic Sea during winter can be expected. Both the frequency and the duration of marine heat waves will increase significantly, in particular in the coastal zone of the southern Baltic Sea (except in regions with frequent upwellings). Nonetheless, due to the uncertainties in the projections regarding regional winds, the water cycle and the global sea level rise, robust and statistically significant salinity changes could not be identified. The impact of a changing climate on biogeochemical cycling is predicted to be considerable but still smaller than that of plausible nutrient input changes. Implementing the proposed Baltic Sea Action Plan, a nutrient input abatement plan for the entire catchment area, would result in a significantly improved ecological status of the Baltic Sea, including reductions in the size of the hypoxic area also in a future climate, which in turn would increase the resilience of the Baltic Sea against anticipated climate change. While our findings regarding changes in heat-cycle variables mainly confirm earlier scenario simulations, they differ substantially from earlier projections of salinity and biogeochemical cycles, due to differences in experimental setups and in input scenarios for bioavailable nutrients.
Abstract. Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in climate of the Baltic Sea region is summarized and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focusses on the atmosphere, land, cryosphere, ocean, sediments and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in paleo-, historical and future regional climate research, we find that the main conclusions from earlier assessments remain still valid. However, new long-term, homogenous observational records, e.g. for Scandinavian glacier inventories, sea-level driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution and new scenario simulations with improved models, e.g. for glaciers, lake ice and marine food web, have become available. In many cases, uncertainties can now be better estimated than before, because more models can be included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth System have been studied and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication and climate change. New data sets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal time scales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first paleoclimate simulations regionalized for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA) and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics is dominated by tides, the Baltic Sea is characterized by brackish water, a perennial vertical stratification in the southern sub-basins and a seasonal sea ice cover in the northern sub-basins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.