The analysis of intra-cycle velocity profile of manual wheelchair (MWC) users has been used to highlight the significant role of trunk inertia in propulsion biomechanics. Maximal wheelchair linear velocity has previously been observed to be reached after the release of the handrims both during sports activities and daily life propulsion. This paper provides a combined analysis of linear velocity and trunk kinematics in elite wheelchair racing athletes during straight-line propulsion at stabilized speeds. MWC and trunk kinematics of eight athletes (level: 7 elite, 1 intermediate; classification: T54 (5), T53 (2) and T52 (1)) were monitored during 400 m races using inertial measurement units. An average propulsion cycle was computed for each athlete. The main finding of this article is the difference in propulsion patterns among the athletes, exhibiting either 1, 2 or 3 peaks in their velocity profile. A second peak in velocity is usually assumed to be caused by the inertia of the trunk. However, the presence of a second velocity peak among more severely impaired athletes with little to no trunk motion can either be associated to the inertia of the athletes’ arms or to their propulsion technique.
IntroductionIn wheelchair rugby, players use either an offensive or defensive wheelchair depending on their field position and level of impairment. Performance of wheelchair rugby players is related to several parameters, however it is currently unclear if differences in performance are related to wheelchair type or no: the effect of wheelchair type on performance variables has not been evaluated. The aim of this study was to compare offensive and defensive wheelchairs on performance variables during a straight-line sprint.MethodsThirteen able-bodied people performed two 20 m sprint trials: one with an offensive and one with a defensive wheelchair. Data were collected using inertial measurement units fixed on the wheelchair. Peak wheelchair velocities and left-right asymmetries in peak wheel velocities were measured during the acceleration and constant peak velocity phases. Sprint time, cycle frequency, and mean and maximum velocity were calculated over the entire sprint.ResultsThe peak velocities of the first 2 pushes (acceleration phase) were significantly higher with the defensive than the offensive wheelchair (p < 0.04 and p < 0.02). Mean and maximum sprint velocity were significantly higher (p < 0.03 and p < 0.04, respectively) with the defensive wheelchair. Cycle frequency and asymmetry did not differ between wheelchairs.ConclusionPerformance was higher with the defensive than the offensive wheelchair, suggesting that the frequent finding that the higher performance of offensive as compared to defensive players is not related to the use of an offensive wheelchair.
The upper limb force–velocity relationship (FVR) is a crucial aspect of athletic performance, particularly in para-sports where upper limb movements play a leading role in activities such as wheelchair propulsion. Athletes’ mechanical capacities can be evaluated on the field or in lab conditions. However, no studies have yet indicated a relationship between ergometers and field FVR or performances. Understanding para-athletes’ upper limb FVR can provide important insights for developing effective training programs and improving athletic performance in wheelchair basketball players. Twenty-three wheelchair basketball players (12 women and 11 men) from French national teams performed a battery of three tests consisting of a 20 m sprint (SP) with Inertial measurement units (IMU) on wheels, horizontal upper limb push-offs on a frictionless sled with two Kistler force plates (HBP), and a crank ergometer sprint test (CES) derived from arm ergometer sprints using Brachumera, Lode. For the SP test, the FVR was computed with an estimation of force from the acceleration, the rolling resistance, and an estimation of the air resistance. Correlations between each variable measured were computed via Pearson correlations in R, assuming a strong relationship when r = 0.7–1.0, moderate when r = 0.40–0.69, and weak when r < 0.1–0.39. Significant differences were assumed when p < 0.05. Strong correlations were found between the results of the three tests conducted. The correlation coefficient between maximal theoretical force (F0) data ranged from 0.85 to 0.88, and that between maximal theoretical power (P0) data ranged from 0.87 to 0.94. However, for maximal theoretical velocity (V0) data, the correlations between the three tests were less important. The performance variables showed a strong correlation with power measured in the HBP test without load. There was a significant relationship between the HBP, CES, and SP variables. There was a correlation between performance on the three tests in our population, especially for power. However, the V0 value of HBP was not representative of any performances. This work uses multiple protocols to assess para-athletes’ performance and shows that upper limb symmetry depends on the gesture of the task and the personal sports’ wheelchair.
Introduction Interlimb asymmetry of strength and/or motor coordination could limit the performance of wheelchair athletes or increase their risk of injury. Studies of interlimb asymmetry in the lower limbs have shown high between‐subject variability that does not depend on the side of dominance and that does not change with fatigue. Upper limb asymmetry is particularly large in manual wheelchair athletes with a lower degree of impairment. The aim of this study was to evaluate interlimb asymmetry of forces developed during an upper limb Wingate anaerobic test, the effects of fatigue on force, and differences between high‐ and low‐point players. Method Twenty‐five wheelchair basketball players (13 females and 12 males) of male and female national French teams performed a 30s anaerobic Wingate test on an arm ergometer. Participants were classified into two functional categories, high‐point (classed from 3 to 4.5) and low‐point (classed from 1 to 2.5), according to the International Wheelchair Basketball Federation classification. Left and right arm forces were measured during the pushing and pulling phases at peak power, 10s, and the end of the 30s test. Results Upper limb asymmetry changed with fatigue during each phase. Force asymmetry differed between peak power, 10s and 30s, with no consistent increase or decrease. Asymmetry did not differ significantly between low‐ and high‐point players but tended to be greater in high‐point players. Asymmetry tended to be greater in the females, with significant differences between the males and females in the push phase. Conclusion Inter‐subject variability was high, but forces were asymmetric for most participants, especially females. The Wingate anaerobic test could highlight problematic asymmetries that might impact daily life or sports performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.