Photosynthesis is a highly integrated and regulated process which is highly sensitive to any change in environmental conditions, because it needs to balance the light energy absorbed by the photosystems with the energy consumed by metabolic sinks of the plant. Low temperatures exacerbate an imbalance between the source of energy and the metabolic sink, thus requiring adjustments of photosynthesis to maintain the balance of energy flow. Photosynthesis itself functions as a sensor of this imbalance through the redox state of photosynthetic electron-transport components and regulates photophysical, photochemical and metabolic processes in the chloroplast. Recent progress has been made in understanding how plants sense the low temperature signal. It is clear that photosynthesis interacts with other processes during cold acclimation involving crosstalk between photosynthetic redox, cold acclimation and sugar-signalling pathways to regulate plant acclimation to low temperatures.
Photosynthetic carbon gain in plants using the C3 photosynthetic pathway is substantially inhibited by photorespiration in warm environments, particularly in atmospheres with low CO2 concentrations. Unlike C4 plants, C3 plants are thought to lack any mechanism to compensate for the loss of photosynthetic productivity caused by photorespiration. Here, for the first time, we demonstrate that the C3 plants rice and wheat employ a specific mechanism to trap and reassimilate photorespired CO2. A continuous layer of chloroplasts covering the portion of the mesophyll cell periphery that is exposed to the intercellular air space creates a diffusion barrier for CO2 exiting the cell. This facilitates the capture and reassimilation of photorespired CO2 in the chloroplast stroma. In both species, 24-38% of photorespired and respired CO2 were reassimilated within the cell, thereby boosting photosynthesis by 8-11% at ambient atmospheric CO2 concentration and 17-33% at a CO2 concentration of 200 mmol mol -1 . Widespread use of this mechanism in tropical and subtropical C3 plants could explain why the diversity of the world's C3 flora, and dominance of terrestrial net primary productivity, was maintained during the Pleistocene, when atmospheric CO2 concentrations fell below 200 mmol mol -1 .
Contents 986I.987II.987III.988IV.991V.992VI.995VII.997VIII.998References998 Summary It has been 75 yr since leaf respiratory metabolism in the light (day respiration) was identified as a low‐flux metabolic pathway that accompanies photosynthesis. In principle, it provides carbon backbones for nitrogen assimilation and evolves CO2 and thus impacts on plant carbon and nitrogen balances. However, for a long time, uncertainties have remained as to whether techniques used to measure day respiratory efflux were valid and whether day respiration responded to environmental gaseous conditions. In the past few years, significant advances have been made using carbon isotopes, ‘omics’ analyses and surveys of respiration rates in mesocosms or ecosystems. There is substantial evidence that day respiration should be viewed as a highly dynamic metabolic pathway that interacts with photosynthesis and photorespiration and responds to atmospheric CO2 mole fraction. The view of leaf day respiration as a constant and/or negligible parameter of net carbon exchange is now outdated and it should now be regarded as a central actor of plant carbon‐use efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.