Abstract. CHIMERE is a chemistry-transport model designed for regional atmospheric composition. It can be used at a variety of scales from local to continental domains. However, due to the model design and its historical use as a regional model, major limitations had remained, hampering its use at hemispheric scale, due to the coordinate system used for transport as well as to missing processes that are important in regions outside Europe. Most of these limitations have been removed in the CHIMERE-2017 version, allowing its use in any region of the world and at any scale, from the scale of a single urban area up to hemispheric scale, with or without polar regions included. Other important improvements have been made in the treatment of the physical processes affecting aerosols and the emissions of mineral dust. From a computational point of view, the parallelization strategy of the model has also been updated in order to improve model numerical performance and reduce the code complexity. The present article describes all these changes. Statistical scores for a model simulation over continental Europe are presented, and a simulation of the circumpolar transport of volcanic ash plume from the Puyehue volcanic eruption in June 2011 in Chile provides a test case for the new model version at hemispheric scale.
A secondary organic aerosol (SOA) model, the Hydrophilic/Hydrophobic Organic model (H2O), is presented and evaluated over Europe. H2O uses surrogate organic molecules to represent the myriad of SOA species and distinguishes two kinds of surrogate species: hydrophilic species (which condense preferentially into an aqueous phase) and hydrophobic species (which condense only into an organic phase). These surrogate species are formed from the oxidation in the atmosphere of volatile organic compounds. H2O includes several important processes, including the effect of nitrogen oxides (NOX) on SOA formation, the dissociation of organic acids in an aqueous phase, the oligomerization of aldehydes, the non‐ideality of the particle phase and the hygroscopicity of organics. Concentrations of organic aerosols were simulated over Europe from July 2002 to July 2003 for comparison with measurements of the European Monitoring Evaluation Program (EMEP). In H2O, primary organic aerosols (POA) are considered as semi‐volatile organic compounds (SVOC) present in both the gas phase and the particle phase. Taking into account the gas‐phase fraction of SVOC increases significantly organic PM concentrations, particularly in winter, in better agreement with observations. The impacts on organic aerosol formation of ideality, of the choice of the parameterization for isoprene SOA formation, and of the OM/OC ratio of the model were also investigated. Assuming ideality in H2O was found to lead to a small decrease in OM. Compared to a two‐product parameterization, the parameterization of Couvidat and Seigneur [2011] for SOA formation from isoprene oxidation leads to a significant increase in isoprene SOA by taking into account their hydrophilic properties and suggests that most models may currently underestimate isoprene SOA.
a b s t r a c tThis study aims to compare the relative impact of biogenic emissions on ozone (O 3 ) and particulate matter (PM) concentrations between North America (NA) and Europe. The simulations are conducted with the Polyphemus air quality modeling system over July and August 2006. Prior to the sensitivity study on the impact of biogenic emissions on air quality, the modeling results are compared to observational data, as well as to the concentrations obtained by other modeling teams of the Air Quality Model Evaluation International Initiative (AQMEII) study.Over Europe, three distinct emission inventories are used. Model performance is satisfactory for O 3 , PM 10 and PM 2.5 with all inventories with respect to the criteria described in the literature. Furthermore, the rmse and errors are lower than the average rmse and errors of the AQMEII simulations. Over North America, the model performance satisfies the criteria described in the literature for O 3 , PM 10 and PM 2.5 . Polyphemus results are within the range of the AQMEII model results. Although the rmse and errors are higher than the average of the AQMEII simulations for O 3 , they are lower for PM 10 and PM 2.5 .The impact of biogenic and anthropogenic emissions on O 3 and PM concentrations is studied by removing alternatively biogenic and anthropogenic emissions in distinct simulations. Because biogenic species interact strongly with NO x , the impact of biogenic emissions on O 3 concentrations varies with variations of the Volatile Organic Compound (VOC)/NO x ratio. This impact is larger over NA than Europe. O 3 decreases by 10e11% on average over Europe and 20% over NA. Locally, the relative impact is also higher in NA (60% maximum) than in Europe (35% maximum). O 3 decreases near large urban centers where biogenic emissions are large (e.g. Los Angeles, Chicago, Houston in NA, Milan in Europe).Most of secondary organic aerosols (SOA) formed at the continental scale over Europe and NA are biogenic aerosols. Eliminating biogenic emissions reduces SOA by 72e88% over Europe and by 90% over NA. However, biogenic SOA are not only impacted by biogenic but also by anthropogenic emissions: eliminating all anthropogenic emissions affects oxidant levels and the absorbing carbon mass, reducing the formation of SOA by 15e16% over Europe and by about 10% over NA; Furthermore, locally, the reduction may be as large as 50%, especially over large urban centers in Europe and NA.
Abstract. In this paper the Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model determines the partitioning of organic compounds between the gas and particle phases. It is designed to be modular with different user options depending on the computation time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption into the aqueous phase of particles, activity coefficients and phase separation).Each surrogate can be hydrophilic (condenses only into the aqueous phase of particles), hydrophobic (condenses only into the organic phases of particles) or both (condenses into both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC (UNIversal Functional group Activity Coefficient; Fredenslund et al., 1975) thermodynamic model for short-range interactions and with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) parameterization for medium-and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization.The user can choose between an equilibrium representation and a dynamic representation of organic aerosols (OAs). In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol is not at equilibrium with the gas phase because the organic phases could be semi-solid (very viscous liquid phase). The condensation-evaporation of organic compounds could then be limited by the diffusion in the organic phases due to the high viscosity. An implicit dynamic representation of secondary organic aerosols (SOAs) is available in SOAP with OAs divided into layers, the first layer being at the center of the particle (slowly reaches equilibrium) and the final layer being near the interface with the gas phase (quickly reaches equilibrium). Although this dynamic implicit representation is a simplified approach to model condensation-evaporation with a low number of layers and short CPU (central processing unit) time, it shows good agreements with an explicit representation of condensation-evaporation (no significant differences after a few hours of condensation).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.