The scalability of multithreaded applications on current multicore systems is hampered by the performance of lock algorithms, due to the costs of access contention and cache misses. The main contribution presented in this article is a new locking technique, Remote Core Locking (RCL), that aims to accelerate the execution of critical sections in legacy applications on multicore architectures. The idea of RCL is to replace lock acquisitions by optimized remote procedure calls to a dedicated server hardware thread. RCL limits the performance collapse observed with other lock algorithms when many threads try to acquire a lock concurrently and removes the need to transfer lock-protected shared data to the hardware thread acquiring the lock, because such data can typically remain in the server’s cache. Other contributions presented in this article include a profiler that identifies the locks that are the bottlenecks in multithreaded applications and that can thus benefit from RCL, and a reengineering tool that transforms POSIX lock acquisitions into RCL locks. Eighteen applications were used to evaluate RCL: the nine applications of the SPLASH-2 benchmark suite, the seven applications of the Phoenix 2 benchmark suite, Memcached, and Berkeley DB with a TPC-C client. Eight of these applications are unable to scale because of locks and benefit from RCL on an ×86 machine with four AMD Opteron processors and 48 hardware threads. By using RCL instead of Linux POSIX locks, performance is improved by up to 2.5 times on Memcached, and up to 11.6 times on Berkeley DB with the TPC-C client. On a SPARC machine with two Sun Ultrasparc T2+ processors and 128 hardware threads, three applications benefit from RCL. In particular, performance is improved by up to 1.3 times with respect to Solaris POSIX locks on Memcached, and up to 7.9 times on Berkeley DB with the TPC-C client.
Today, Java is regularly used to implement large multithreaded server-class applications that use locks to protect access to shared data. However, understanding the impact of locks on the performance of a system is complex, and thus the use of locks can impede the progress of threads on configurations that were not anticipated by the developer, during specific phases of the execution. In this paper, we propose Free Lunch, a new lock profiler for Java application servers, specifically designed to identify, in-vivo, phases where the progress of the threads is impeded by a lock. Free Lunch is designed around a new metric, critical section pressure (CSP), which directly correlates the progress of the threads to each of the locks. Using Free Lunch, we have identified phases of high CSP, which were hidden with other lock profilers, in the distributed Cassandra NoSQL database and in several applications from the DaCapo 9.12, the SPECjvm-2008 and the SPECjbb2005 benchmark suites. Our evaluation of Free Lunch shows that its overhead is never greater than 6%, making it suitable for in-vivo use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.