Previous studies have shown that gastric glands express at least sodium-hydrogen exchanger (NHE) isoforms 1-4. Our aim was to study NHE-3 localization in rat parietal cells and to investigate the functional activity of an apical membrane NHE-3 isoform in parietal cells of rats. Western blot analysis and immunohistochemistry showed expression of NHE-3 in rat stomach colocalizing the protein in parietal cells together with the β-subunit of the H+-K+-ATPase. Functional studies in luminally perfused gastric glands demonstrated the presence of an apical NHE isoform sensitive to low concentrations of 5-ethylisopropyl amiloride (EIPA). Intracellular pH measurements in parietal cells conducted in omeprazole-pretreated superfused gastric glands showed an Na+-dependent proton extrusion pathway that was inhibited both by low concentrations of EIPA and by the NHE-3 specific inhibitor S3226. This pathway for proton extrusion had a higher activity in resting glands and was inhibited on stimulation of histamine-induced H+-K+-ATPase proton extrusion. We conclude that the NHE-3 isoform located on the apical membrane of parietal cells offers an additional pathway for proton secretion under resting conditions. Furthermore, the gastric NHE-3 appears to work under resting conditions and inactivates during periods of H+-K+-ATPase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.