We study the two-point correlator of an O(N) scalar field with quartic self-coupling in de Sitter space. For light fields in units of the expansion rate, perturbation theory is plagued by large logarithmic terms for superhorizon momenta. We show that a proper treatment of the infinite series of self-energy insertions through the Schwinger-Dyson equations resums these infrared logarithms into power laws. We provide an exact analytical solution of the Schwinger-Dyson equations for infrared momenta when the self-energy is computed at two-loop order. Our findings encompass previously obtained results using either stochastic or Euclidean approaches. The obtained correlator exhibits a rich structure with a superposition of free-field-like power laws. We extract mass and field-strength renormalization factors from the asymptotic infrared behavior. The latter are nonperturbative in the coupling in the case of a vanishing tree-level mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.