The successful implementation of nanoscale materials in next generation optoelectronic devices crucially depends on our ability to functionalize and design low dimensional materials according to the desired field of application. Recently, organic adsorbates have revealed an enormous potential to alter the occupied surface band structure of tunable materials by the formation of tailored molecule-surface bonds. Here, we extend this concept of adsorption-induced surface band structure engineering to the unoccupied part of the surface band structure. This is achieved by our comprehensive investigation of the unoccupied band structure of a lead (Pb) monolayer film on the Ag(1 1 1) surface prior and after the adsorption of one monolayer of the aromatic molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA). Using two-photon momentum microscopy, we show that the unoccupied states of the Pb/Ag(1 1 1) bilayer system are dominated by a parabolic quantum well state (QWS) in the center of the surface Brillouin zone with Pb p orbital character and a side band with almost linear dispersion showing Pb p orbital character. After the adsorption of PTCDA, the Pb side band remains completely unaffected while the signal of the Pb QWS is fully suppressed. This adsorption induced change in the unoccupied Pb band structure coincides with an interfacial charge transfer from the Pb layer into the PTCDA molecule. We propose that this charge transfer and the correspondingly vertical (partially chemical) interaction across the PTCDA/Pb interface suppresses the existence of the QWS in the Pb layer. Our results hence unveil a new possibility to orbital selectively tune and control the entire surface band structure of low dimensional systems by the adsorption of organic molecules.
The high flexibility of organic molecules offers great potential for designing the optical properties of optically active materials for the next generation of optoelectronic and photonic applications. However, despite successful implementations of molecular materials in today’s display and photovoltaic technology, many fundamental aspects of the light-to-charge conversion in molecular materials have still to be uncovered. Here, we focus on the ultrafast dynamics of optically excited excitons in C60 thin films depending on the molecular coverage and the light polarization of the optical excitation. Using time- and momentum-resolved photoemission with femtosecond extreme ultraviolet (fs-XUV) radiation, we follow the exciton dynamics in the excited states while simultaneously monitoring the signatures of the excitonic charge character in the renormalization of the molecular valence band structure. Optical excitation with visible light results in the instantaneous formation of charge-transfer (CT) excitons, which transform stepwise into Frenkel-like excitons at lower energies. The number and energetic position of the CT and Frenkel-like excitons within this cascade process are independent of the molecular coverage and the light polarization of the optical excitation. In contrast, the depopulation times of the CT and Frenkel-like excitons depend on the molecular coverage, while the excitation efficiency of CT excitons is determined by the light polarization. Our comprehensive study reveals the crucial role of CT excitons for the excited-state dynamics of homomolecular fullerene materials and thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.