Listeria monocytogenes is a model organism for cellular microbiology and host–pathogen interaction studies and an important food-borne pathogen widespread in the environment, thus representing an attractive model to study the evolution of virulence. The phylogenetic structure of L. monocytogenes was determined by sequencing internal portions of seven housekeeping genes (3,288 nucleotides) in 360 representative isolates. Fifty-eight of the 126 disclosed sequence types were grouped into seven well-demarcated clonal complexes (clones) that comprised almost 75% of clinical isolates. Each clone had a unique or dominant serotype (4b for clones 1, 2 and 4, 1/2b for clones 3 and 5, 1/2a for clone 7, and 1/2c for clone 9), with no association of clones with clinical forms of human listeriosis. Homologous recombination was extremely limited (r/m<1 for nucleotides), implying long-term genetic stability of multilocus genotypes over time. Bayesian analysis based on 438 SNPs recovered the three previously defined lineages, plus one unclassified isolate of mixed ancestry. The phylogenetic distribution of serotypes indicated that serotype 4b evolved once from 1/2b, the likely ancestral serotype of lineage I. Serotype 1/2c derived once from 1/2a, with reference strain EGDe (1/2a) likely representing an intermediate evolutionary state. In contrast to housekeeping genes, the virulence factor internalin (InlA) evolved by localized recombination resulting in a mosaic pattern, with convergent evolution indicative of natural selection towards a truncation of InlA protein. This work provides a reference evolutionary framework for future studies on L. monocytogenes epidemiology, ecology, and virulence.
The actin and microtubule (MT) cytoskeletons are vital structures for cell growth and development across all species. While individual molecular mechanisms underpinning actin and MT dynamics have been intensively studied, principles that govern the cytoskeleton organization remain largely unexplored. Here, we captured biologically relevant characteristics of the plant cytoskeleton through a network-driven imaging-based approach allowing us to quantitatively assess dynamic features of the cytoskeleton. By introducing suitable null models, we demonstrate that the plant cytoskeletal networks exhibit properties required for efficient transport, namely, short average path lengths and high robustness. We further show that these advantageous features are maintained during temporal cytoskeletal rearrangements. Interestingly, man-made transportation networks exhibit similar properties, suggesting general laws of network organization supporting diverse transport processes. The proposed network-driven analysis can be readily used to identify organizational principles of cytoskeletons in other organisms.
In this article, it is shown that available genetic tools for the omnipresent parasite Anguillicoloides crassus in European eels Anguilla anguilla are sensitive to different immigration rates into local A. anguilla stocks for two separated river systems. Relying on four highly polymorphic microsatellite markers, it was inferred that under natural recruitment, nematode samples meet Hardy-Weinberg expectations for a single panmictic population, while genetic signals show signs for a strong Wahlund effect most likely due to very recent population mixing under frequent restocking of young A. anguilla. This was indicated by a low but significant F(ST) value among within-host populations (infrapopulations) along with high inbreeding indices F(IS) consistent over all loci. The latter signal is shown to stem from high levels of admixture and the presence of first-generation migrants, and alternative explanations such as marker- and sex-specific biases in the nematode populations could be dismissed. Moreover, the slightly increased degree of relatedness within infrapopulations in the stocked river system cannot explain the excessive inbreeding values found and are most likely a direct consequence of recent influx of already infected fish harbouring parasites with different genetic signatures. Applying a simulation approach using known variables from the nematode's invasion history, only the artificial introduction of a Wahlund effect leads to a close match between simulated and real data, which is a strong argument for using the parasite as a biological tag for detecting and characterizing fish translocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.