The piezoelectric direct discharge (PDD) is a comparatively new type of atmospheric pressure gaseous discharge for production of cold plasma. The generation of such discharge is possible using the piezoelectric cold plasma generator (PCPG) which comprises the resonant piezoelectric transformer (RPT) with voltage transformation ratio of more than 1000, allowing for reaching the output voltage >10 kV at low input voltage, typically below 25 V. As ionization gas for the PDD, either air or various gas mixtures are used. Despite some similarities with corona discharge and dielectric barrier discharge, the ignition of micro-discharges directly at the ceramic surface makes PDD unique in its physics and application potential. The PDD is used directly, in open discharge structures, mainly for treatment of electrically nonconducting surfaces. It is also applied as a plasma bridge to bias different excitation electrodes, applicable for a broad range of substrate materials. In this review, the most important architectures of the PDD based discharges are presented. The operation principle, the main operational characteristics and the example applications, exploiting the specific properties of the discharge configurations, are discussed. Due to the moderate power achievable by PCPG, of typically less than 10 W, the focus of this review is on applications involving thermally sensitive materials, including food, organic tissues, and liquids.
The piezoelectric direct discharge sustained using a high-performance piezoelectric transformer (PT) with a voltage transformation ratio of >1,000 was used for the generation of an atmospheric pressure plasma jet (APPJ). The ionization gases used are ambient air and compressed dry air. The APPJ was characterized using capacitive probe measurement, ozone concentration measurement, and activation area determination. The activation experiments were conducted on a highdensity polyethylene. The activation area was visualized using pure formamide test ink (58 mN/m) and captured by a digital camera. The influence of gas flow, PT power, and the distance between the PT and the substrate were investigated. K E Y W O R D S atmospheric pressure plasma jet (APPJ), CeraPlas™ F, piezoelectric direct discharge (PDD), piezoelectric transformer (PT), plasma surface treatment This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
The piezoelectric cold plasma generators (PCPG) allow for production of the piezoelectric direct discharge (PDD), which is a kind of cold atmospheric pressure plasma (APP). The subjects of this study are different arrays of PCPGs for large-area treatment of planar substrates. Two limiting factors are crucial for design of such arrays: (i) the parasitic coupling between PCPGs resulting in minimum allowed distance between devices, and (ii) the homogeneity of large area treatment, requiring an overlap of the activation zones resulting from each PCPG. The first limitation is investigated by the use of electric measurements. The minimum distance for operation of 4 cm between two PCPGs is determined by measurement of the energy coupling from an active PCPG to a passive one. The capacitive probe is used to evaluate the interference between signals generated by two neighboring PCPGs. The second limitation is examined by activation image recording (AIR). Two application examples illustrate the compromising these two limiting factors: the treatment of large area planar substrates by PCPG array, and the pretreatment of silicon wafers with an array of PCPG driven dielectric barrier discharges (DBD).
The subject of this study is the application of the piezoelectric direct discharge (PDD) operated with nitrogen to control the surface free energy (SFE) of polymers. The activation area, defined as the area of the zone reaching the SFE of 58 mN/m for high-density polyethylene (HDPE) and poly (methyl methacrylate) (PMMA), is characterized. For HDPE, the activation area was characterized as a function of the distance from 1 to 16 mm, the nitrogen flow from 5 to 20 SLM, and the treatment time from 1 to 32 s. For larger distances, where SFE does not exceed 58 mN/m, the water contact angle is evaluated. The activation area for nitrogen PDD is typically a factor of 3 higher than for air with all other conditions the same. A maximum static activation area of 15 cm2 is reached. The plasma treatment of lens panels made of PMMA is presented as application example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.