Up to date the evaporation process in laser beam welding of alloys with volatile elements is not completely understood. This paper discusses the phenomena occurring at the welding process of brass with 37m% zinc. Since copper has a solidification temperature of 1,087°C and zinc vaporizes at a temperature of 907°C, a strong evaporation takes place and an elongation of the keyhole can be observed. Depending upon welding velocity, the ratio of keyhole length to width is between one and six. Furthermore it is observed that a defect free weld seam is formed. Since the melt pool does not leak also for high ratios of keyhole length to width, the conventional keyhole model with a dynamic flow around the laser beam has to be adapted to a model in which the melt flow at the side of the capillary is stabilized also outside of the interaction zone of the laser beam with the melt due to strong evaporation at the flank of the keyhole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.