This article documents the practical efforts of a group of scientists designing an image-processing algorithm for saliency detection. By following the actors of this computer science project, the article shows that the problems often considered to be the starting points of computational models are in fact provisional results of time-consuming, collective and highly material processes that engage habits, desires, skills and values. In the project being studied, problematization processes lead to the constitution of referential databases called ‘ground truths’ that enable both the effective shaping of algorithms and the evaluation of their performances. Working as important common touchstones for research communities in image processing, the ground truths are inherited from prior problematization processes and may be imparted to subsequent ones. The ethnographic results of this study suggest two complementary analytical perspectives on algorithms: (1) an ‘axiomatic’ perspective that understands algorithms as sets of instructions designed to solve given problems computationally in the best possible way, and (2) a ‘problem-oriented’ perspective that understands algorithms as sets of instructions designed to computationally retrieve outputs designed and designated during specific problematization processes. If the axiomatic perspective on algorithms puts the emphasis on the numerical transformations of inputs into outputs, the problem-oriented perspective puts the emphasis on the definition of both inputs and outputs.
This theoretical paper considers the morality of machine learning algorithms and systems in the light of the biases that ground their correctness. It begins by presenting biases not as a priori negative entities but as contingent external referents—often gathered in benchmarked repositories called ground-truth datasets—that define what needs to be learned and allow for performance measures. I then argue that ground-truth datasets and their concomitant practices—that fundamentally involve establishing biases to enable learning procedures—can be described by their respective morality, here defined as the more or less accounted experience of hesitation when faced with what pragmatist philosopher William James called “genuine options”—that is, choices to be made in the heat of the moment that engage different possible futures. I then stress three constitutive dimensions of this pragmatist morality, as far as ground-truthing practices are concerned: (I) the definition of the problem to be solved (problematization), (II) the identification of the data to be collected and set up (databasing), and (III) the qualification of the targets to be learned (labeling). I finally suggest that this three-dimensional conceptual space can be used to map machine learning algorithmic projects in terms of the morality of their respective and constitutive ground-truthing practices. Such techno-moral graphs may, in turn, serve as equipment for greater governance of machine learning algorithms and systems.
A laboratory study that investigates how algorithms come into existence. Algorithms—often associated with the terms big data, machine learning, or artificial intelligence—underlie the technologies we use every day, and disputes over the consequences, actual or potential, of new algorithms arise regularly. In this book, Florian Jaton offers a new way to study computerized methods, providing an account of where algorithms come from and how they are constituted, investigating the practical activities by which algorithms are progressively assembled rather than what they may suggest or require once they are assembled. Drawing on a four-year ethnographic study of a computer science laboratory that specialized in digital image processing, Jaton illuminates the invisible processes that are behind the development of algorithms. Tracing what he terms a set of intertwining courses of actions sharing common finalities, he describes the practical activity of creating algorithms through the lenses of ground-truthing, programming, and formulating. He first presents the building of ground truths, referential repositories that form the material basis for algorithms. Then, after considering programming's resistance to ethnographic scrutiny, he describes programming courses of action he attended at the laboratory. Finally, he offers an account of courses of action that successfully formulated some of the relationships among the data of a ground-truth database, revealing the links between ground-truthing, programming, and formulating activities—entangled processes that lead to the shaping of algorithms. In practice, ground-truthing, programming, and formulating form a whirlwind process, an emergent and intertwined agency. The open access edition of this book was made possible by generous funding from Arcadia – a charitable fund of Lisbet Rausing and Peter Baldwin.
La reproduction ou représentation de cet article, notamment par photocopie, n'est autorisée que dans les limites des conditions générales d'utilisation du site ou, le cas échéant, des conditions générales de la licence souscrite par votre établissement. Toute autre reproduction ou représentation, en tout ou partie, sous quelque forme et de quelque manière que ce soit, est interdite sauf accord préalable et écrit de l'éditeur, en dehors des cas prévus par la législation en vigueur en France. Il est précisé que son stockage dans une base de données est également interdit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.