Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β-d-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp–RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.
Highlights d KI-ARv-03 reduces AR protein levels and AR-driven transcription d KI-ARv-03 is deduced to be a potent, ultraselective inhibitor of CDK9 d Optimization led to the orally bioavailable and selective CDK9 inhibitor KB-0742 d KB-0742 displays potent anti-tumor activity in cancer models in vitro and in vivo
Molnupiravir is an orally available antiviral drug candidate that is in phase III trials for the treatment of COVID-19 patients. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in patients. Here we establish the molecular mechanisms that underlie molnupiravir-induced RNA mutagenesis by the RNA-dependent RNA polymerase (RdRp) of the coronavirus SARS-CoV-2. Biochemical assays show that the RdRp readily uses the active form of molnupiravir, β-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of CTP or UTP. Incorporation of NHC monophosphate into nascent RNA does not impair further RdRp progression. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes containing mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism likely applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides. The catalytic activity of most RNRs depends on the formation of a dimer of the catalytic subunits. The active site is located at the interface, and part of the substrate binding site and regulatory mechanisms work across the subunit in the dimer. In this study, we describe and characterize a novel domain responsible for forming the catalytic dimer in several class II RNRs. The 3D structure of the class II RNR from Rhodobacter sphaeroides reveals a so far undescribed αhelical domain in the dimer interface, which is embracing the other subunit. Genetic removal of this HUG domain leads to a severe reduction of activity paired with reduced dimerization capability. In comparison with other described RNRs, the enzyme with this domain is less dependent on the presence of nucleotides to act as allosteric effectors in the formation of dimers. The HUG domain appears to serve as an interlock to keep the dimer intact and functional even at low enzyme and/or effector concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.