The aim of this study was to characterize handball from a social network analysis perspective by analyzing 22 professional matches from the 2018 European Men's Handball Championship. Social network analysis has proven successful in the study of sports dynamics to investigate the interaction patterns of sport teams and the individual involvement of players. In handball, passing is crucial to establish an optimal position for throwing the ball into the goal of the opponent team. Moreover, different tactical formations are played during a game, often induced by two-minute suspensions or the addition of an offensive player replacing the goalkeeper as allowed by the International Handball Federation since 2016. Therefore, studying the interaction patterns of handball teams considering the different playing positions under various attack formations contributes to the tactical understanding of the sport. Degree and flow centrality as well as density and centralization values were computed. As a result, quantification of the contribution of individual players to the overall organization was achieved alongside the general balance in interplay. We identified the backcourt as the key players to structure interplay across tactical formations. While attack units without a goalkeeper were played longer, they were either more intensively structured around back positions (7 vs. 6) or spread out (5 + 1 vs. 6). We also found significant differences in the involvement of wing players across formations. The additional pivot in the 7 vs. 6 formation was mostly used to create space for back players and was less involved in interplay. Social network analysis turned out as a suitable method to govern and quantify team dynamics in handball.
Team sports are complex dynamic systems based on the frequent interaction of various players. Recently, social network analysis has been introduced to the study of sports dynamics in order to quantify the involvement of individual players in the interplay and to characterize the organizational processes used by teams. Nonetheless, only a limited set of team sports has been assessed to date, and the focus of most studies has been on the application of small sets of network metrics to a single sport. Our study aims at comparing the network patterns of different team sports in order to contribute to the understanding of their underlying nature. It considers three invasion games, namely professional matches from basketball, football and handball. By applying relevant centrality measures and minimum spanning trees a first comparison between the nature of interplay in various team sports is offered as well as a deeper understanding of the role of different tactical positions in each sport. The point guard in basketball, defensive midfielder in football and center in handball are identified as the most central tactical positions. Direct interplay is most balanced in football followed by basketball and handball. A visualization of the basic structure of interplay for each sport is achieved through minimum spanning trees.
This study identifies dominant and intermediary players in football by applying a play-by-play social network analysis (SNA) on 70 professional matches from the 1. and 2. German Bundesliga during the 2017/2018 season. SNA provides a quantification of the complex interaction patterns between players in team sports. So far, the individual contributions and roles of players in football have only been studied at match-level considering the overall passing of a team. In order to consider the real structure of football, a play-by-play network analysis is needed that reflects actual interplay. Moreover, a distinction between plays of certain characteristics is important to qualify different interaction phases. As it is often impossible to calculate well known network metrics such as betweenness on play-level, new adequate metrics are required. Therefore, flow betweenness is introduced as a new playmaker indicator on play-level and computed alongside flow centrality. The data on passing and the position of players was provided by the Deutsche Fußball Liga (DFL) and gathered through a semi-automatic multiple-camera tracking system. Central defenders are identified as dominant and intermediary players, however, mostly in unsuccessful plays. Offensive midfielders are most involved and defensive midfielders are the main intermediary players in successful plays. Forward are frequently involved in successful plays but show negligible playmaker status. Play-by-play network analysis facilitates a better understanding of the role of players in football interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.